Skip to main content

GCUNET: Combining GNN and CNN for Sinogram Restoration in Low-Dose SPECT Reconstruction

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 762 Accesses

Abstract

To reduce the potential radiation risk, low-dose Single Photon Emission Computed Tomography (SPECT) is of increasing interest. Many deep learning-based methods have been developed to perform low-dose imaging while maintaining image quality. However, most of the existing methods ignore the unique inner-structure inherent in the original sinogram, limiting their restoration ability. In this paper, we propose a GNN-CNN-UNet (GCUNet) to learn the non-local and local structures of the sinogram using Graph Neural Network (GNN) and Convolutional Neural Network (CNN), respectively, for the task of low-dose SPECT sinogram restoration. In particular, we propose a sinogram-structure-based self-defined neighbors GNN (SSN-GNN) method combined with the Window-KNN-based GNN (W-KNN-GNN) module to construct the underlying graph structure. Afterwards, we employ the maximum likelihood expectation maximization (MLEM) to reconstruct the restored sinogram. The XCAT dataset is used to evaluate the performance of the proposed GCUNet. Experimental results demonstrate that, compared to several reconstruction methods, the proposed method achieves significant improvement in both noise reduction and structure preservation.

Supported by Natural Science Foundation of Guangdong under 2022A1515012379.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner, D.J., Hall, E.J.: Computed tomography-an increasing source of radiation exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007)

    Article  Google Scholar 

  2. Chen, H., et al.: Low-dose ct with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  3. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  4. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  5. Han, K., Wang, Y., Guo, J., Tang, Y., Wu, E.: Vision gnn: an image is worth graph of nodes. arXiv preprint arXiv:2206.00272 (2022)

  6. Khalid, F., Javed, A., Ilyas, H., Irtaza, A., et al.: Dfgnn: an interpretable and generalized graph neural network for deepfakes detection. Expert Syst. Appl. 222, 119843 (2023)

    Article  Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  8. Krol, A., Li, S., Shen, L., Xu, Y.: Preconditioned alternating projection algorithms for maximum a posteriori ect reconstruction. Inverse Prob. 28(11), 115005 (2012)

    Article  MathSciNet  Google Scholar 

  9. Li, G., Muller, M., Thabet, A., Ghanem, B.: Deepgcns: can gcns go as deep as cnns? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9267–9276 (2019)

    Google Scholar 

  10. Li, S., Ye, W., Li, F.: Lu-net: combining lstm and u-net for sinogram synthesis in sparse-view spect reconstruction. Math. Biosci. Eng. 19(4), 4320–40 (2022)

    Article  Google Scholar 

  11. Ljungberg, M., Strand, S.E., King, M.A.: Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. CRC Press (2012)

    Google Scholar 

  12. Luthra, A., Sulakhe, H., Mittal, T., Iyer, A., Yadav, S.: Eformer: edge enhancement based transformer for medical image denoising. arXiv preprint arXiv:2109.08044 (2021)

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M.: 4d xcat phantom for multimodality imaging research. Med. Phys. 37(9), 4902–4915 (2010)

    Article  Google Scholar 

  15. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  16. Shi, P., Guo, X., Yang, Y., Ye, C., Ma, T.: Nextou: efficient topology-aware u-net for medical image segmentation. arXiv preprint arXiv:2305.15911 (2023)

  17. Thrall, J.H., Ziessman, H.: Nuclear medicine: the requisites. Mosby-Year Book, Inc., p. 302 (1995)

    Google Scholar 

  18. Tian, C., Xu, Y., Li, Z., Zuo, W., Fei, L., Liu, H.: Attention-guided cnn for image denoising. Neural Netw. 124, 117–129 (2020)

    Article  Google Scholar 

  19. Wang, D., Fan, F., Wu, Z., Liu, R., Wang, F., Yu, H.: Ctformer: convolution-free token2token dilated vision transformer for low-dose ct denoising. Phys. Med. Biol. 68(6), 065012 (2023)

    Article  Google Scholar 

  20. Wells, R.G.: Dose reduction is good but it is image quality that matters. J. Nucl. Cardiol. 27, 238–240 (2020)

    Article  Google Scholar 

  21. Wu, W., Hu, D., Niu, C., Yu, H., Vardhanabhuti, V., Wang, G.: Drone: dual-domain residual-based optimization network for sparse-view ct reconstruction. IEEE Trans. Med. Imaging 40(11), 3002–3014 (2021)

    Article  Google Scholar 

  22. Yang, Q., et al.: Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Article  Google Scholar 

  23. Zhang, Z., Yu, L., Liang, X., Zhao, W., Xing, L.: TransCT: dual-path transformer for low dose computed tomography. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 55–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_6

    Chapter  Google Scholar 

  24. Zhou, B., Chen, X., Zhou, S.K., Duncan, J.S., Liu, C.: Dudodr-net: dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography. Med. Image Anal. 75, 102289 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, K., Liang, Z., Li, S. (2024). GCUNET: Combining GNN and CNN for Sinogram Restoration in Low-Dose SPECT Reconstruction. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics