Skip to main content

CBAV-Loss: Crossover and Branch Losses for Artery-Vein Segmentation in OCTA Images

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 292 Accesses

Abstract

Obvious errors still exist in the segmentation of artery-vein (AV) in retinal optical coherence tomography angiography (OCTA) images, especially near crossover and branch points. It is believed that these errors occur because the existed segmentation method cannot effectively identify the crossover and branch points of AV. In this study, we proposed a Crossover Loss and a Branch Loss (CBAV-Loss), which are two novel structure-preserving loss functions. By restricting the crossover and branch points of arteries and veins, the segmentation accuracy can be improved by correcting the segmentation errors near the crossover and branch points. The experimental results on a manually annotated AV dataset with 400 OCT and OCTA cubes demonstrate that the crossover and branch losses can effectively reduce errors for AV segmentation and preserve vascular connectivity to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kashani, A.H., et al.: Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 60, 66–100 (2017)

    Article  Google Scholar 

  2. Alam, M., Lim, J.I., Toslak, D., Yao, X.: Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy. Transl. Vis. Sci. Technol. 8(2), 3 (2019)

    Article  Google Scholar 

  3. Alam, M., Tosklak, D., Lim, J.I., Yao, X.: Color fundus image guided artery-vein differentiation in optical coherence tomography angiography. Invest. Ophthalmol. Visual Sci. 59(12), 4953–4962 (2018)

    Article  Google Scholar 

  4. Ikram, M.K., et al.: Retinal vessel diameters and risk of impaired fasting glucose or diabetes: the Rotterdam study. Diabetes 55(2), 506–510 (2006)

    Article  Google Scholar 

  5. Wong, T.Y., et al.: Retinal arteriolar narrowing and risk of coronary heart disease in men and women: the Atherosclerosis Risk in Communities Study. JAMA 287(9), 1153–1159 (2002)

    Article  Google Scholar 

  6. Abtahi, M., Le, D., Lim, J.I., Yao, X.: MF-AV-Net: an open-source deep learning network with multimodal fusion options for artery-vein segmentation in OCT angiography. Biomed. Opt. Express 13(9), 4870–4888 (2022)

    Article  Google Scholar 

  7. Le, D., Alam, M., Son, T., Lim, J.I., Yao, X.: Deep learning artery-vein classification in OCT angiography. Ophthal. Technol. XXXI. SPIE 11623, 54–60 (2021)

    Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Wang, J., et al.: Reflectance-based projection-resolved optical coherence tomography angiography. Biomed. Opt. Express 8(3), 1536–1548 (2017)

    Article  Google Scholar 

  10. Gao, M., Guo, Y., Hormel, T.T., Sun, J., Hwang, T.S., Jia, Y.: Reconstruction of high-resolution 6 × 6-mm OCT angiograms using deep learning. Biomed. Opt. Express 11(7), 3585–3600 (2020)

    Article  Google Scholar 

  11. Alam, M., et al.: AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography. Biomed. Opt. Express 11(9), 5249–5257 (2020)

    Article  Google Scholar 

  12. Alam, M.N., Le, D., Yao, X.: Differential artery-vein analysis in quantitative retinal imaging: a review. Quant. Imaging Med. Surg. 11(3), 1102 (2021)

    Article  Google Scholar 

  13. Wendy Aguilar, M., et al.: Graph-based methods for retinal mosaicing and vascular characterization. In: Escolano, F., Vento, M. (eds.) Graph-Based Representations in Pattern Recognition, pp. 25–36. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72903-7_3

  14. Chrástek, R., et al.: Automated Calculation of Retinal Arteriovenous Ratio for Detection and Monitoring of Cerebrovascular Disease Based on Assessment of Morphological Changes of Retinal Vascular System. MVA, pp. 240–243 (2002)

    Google Scholar 

  15. Grisan, E., Ruggeri, A.: A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 1, pp. 890–893. IEEE (2003)

    Google Scholar 

  16. Jelinek, H.F., et al.: Towards vessel characterization in the vicinity of the optic disc in digital retinal images. Image Vis. Comput. Conf. 2(7) (2005)

    Google Scholar 

  17. Li, H., Hsu, W., Lee, M.L., Wang, H.: A piecewise Gaussian model for profiling and differentiating retinal vessels. In: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429), vol. 1, p. I-1069. IEEE (2003)

    Google Scholar 

  18. Niemeijer, M., van Ginneken, B., Abràmoff, M.D.: Automatic classification of retinal vessels into arteries and veins. Medical Imaging 2009: Computer-Aided Diagnosis. SPIE vol. 7260, pp. 422–429 (2009)

    Google Scholar 

  19. Rothaus, K., Jiang, X., Rhiem, P.: Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Image Vis. Comput. 27(7), 864–875 (2009)

    Article  Google Scholar 

  20. Simó, A., de Ves, E.: Segmentation of macular fluorescein angiographies A statistical approach. Pattern Recogn. 34(4), 795–809 (2001)

    Article  Google Scholar 

  21. Vázquez, S., Barreira, N., Penedo, M., Penas, M., PoseReino, A.: Automatic classification of retinal vessels into arteries and veins. In: 7th International Conference Biomedical Engineering (BioMED 2010), pp. 230–236 (2010)

    Google Scholar 

  22. Vázquez, S.G., et al.: Improving retinal artery and vein classification by means of a minimal path approach. Mach. Vis. Appl. 24(5), 919–930 (2013)

    Article  Google Scholar 

  23. Milletari, F., Navab, N., Ahmadi, S.A.; V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  24. Ozan, O., et al.: Attention U-Net: Learning Where to Look for the Pancreas. arXiv preprint arXiv:1804.03999 (2018)

  25. Ming, L., et al.: Ipn-v2 and octa-500: methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)

  26. Yali, J., et al.: Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 20(4), 4710–4725 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China under Grants (62172223, 62072241), and the Fundamental Research Funds for the Central Universities (30921013105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Ma, X., Ji, Z., Su, N., Yuan, S., Chen, Q. (2024). CBAV-Loss: Crossover and Branch Losses for Artery-Vein Segmentation in OCTA Images. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics