Skip to main content

Weakly/Semi-supervised Left Ventricle Segmentation in 2D Echocardiography with Uncertain Region-Aware Contrastive Learning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 326 Accesses

Abstract

Segmentation of the left ventricle in 2D echocardiography is essential for cardiac function measures, such as ejection fraction. Fully-supervised algorithms have been used in the past to segment the left ventricle and then offline estimate ejection fraction, but it is costly and time-consuming to obtain annotated segmentation ground truths for training. To solve this issue, we propose a weakly/semi-supervised framework with multi-level geometric regularization of vertex (boundary points), boundary and region predictions. The framework benefits from learning discriminative features and neglecting boundary uncertainty via the proposed contrastive learning. Firstly, we propose a multi-level regularized semi-supervised paradigm, where the regional and boundary regularization is favourable owing to the intrinsic geometric coherence of vertex, boundary and region predictions. Secondly, we propose an uncertain region-aware contrastive learning mechanism along the boundary via a hard negative sampling strategy for labeled and unlabeled data at the pixel level. The uncertain region along the boundary is omitted, enabling generalized semi-supervised learning with reliable boundary prediction. Thirdly, for the first time, we proposed a differentiable ejection fraction estimation module along with 2D echocardiographic left ventricle segmentation for end-to-end training without offline post-processing. Supervision on ejection fraction can also serve as weak supervision for the left ventricular vertex, region and boundary predictions without further annotations. Experiments on the EchoNet-Dynamic datasets demonstrate that our method outperforms state-of-the-art semi-supervised approaches for segmenting left ventricle and estimating ejection fraction.

Y. Meng and Y. Zhang—co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. PNPOLY- point inclusion in polygon test. https://wrf.ecse.rpi.edu/Research/Short_Notes/ pnpoly.html. Accessed 01 Jun 2022

  2. Cheng, B., Girshick, R., Dollár, P., Berg, A.C., Kirillov, A.: Boundary IoU: improving object-centric image segmentation evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  3. Deng, K., et al.: TransBridge: a lightweight transformer for left ventricle segmentation in echocardiography. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, S.-L., Hu, Y. (eds.) ASMUS 2021. LNCS, vol. 12967, pp. 63–72. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87583-1_7

    Chapter  Google Scholar 

  4. Dodge, H.T., Sandler, H., Ballew, D.W., Lord, J.D., Jr.: The use of biplane angiocardiography for the measurement of left ventricular volume in man. Am. Heart J. 60(5), 762–776 (1960)

    Article  Google Scholar 

  5. Folland, E., Parisi, A., Moynihan, P., Jones, D.R., Feldman, C.L., Tow, D.: Assessment of left ventricular ejection fraction and volumes by real-time, two- dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation 60(4), 760–766 (1979)

    Article  Google Scholar 

  6. Gao, S., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.H.: Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 42, 652–662 (2019)

    Google Scholar 

  7. Gu, R., et al.: Contrastive semi-supervised learning for domain adaptive segmentation across similar anatomical structures. IEEE Trans. Med. Imaging 42(1), 245–256 (2022)

    Article  Google Scholar 

  8. Guo, L., et al.: Dual attention enhancement feature fusion network for segmentation and quantitative analysis of paediatric echocardiography. Med. Image Anal. 71, 102042 (2021)

    Article  Google Scholar 

  9. Hu, H., Cui, J., Wang, L.: Region-aware contrastive learning for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16291–16301 (2021)

    Google Scholar 

  10. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  11. Lazarow, J., Xu, W., Tu, Z.: Instance segmentation with mask-supervised polygonal boundary transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4382–4391 (2022)

    Google Scholar 

  12. Li, H., Wang, Y., Qu, M., Cao, P., Feng, C., Yang, J.: EchoEFNet: multi-task deep learning network for automatic calculation of left ventricular ejection fraction in 2D echocardiography. Comput. Biol. Med. 156, 106705 (2023)

    Article  Google Scholar 

  13. Li, Y., Luo, L., Lin, H., Chen, H., Heng, P.-A.: Dual-consistency semi-supervised learning with uncertainty quantification for COVID-19 lesion segmentation from CT images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 199–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_19

    Chapter  Google Scholar 

  14. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021)

    Google Scholar 

  15. Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022, Part I, Singapore, 18–22 September 2022, pp. 528–538. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_50

  16. Luo, X., et al.: Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Med. Image Anal. 80, 102517 (2022)

    Article  Google Scholar 

  17. Meng, Y., et al.: Diagnosis of diabetic neuropathy by artificial intelligence using corneal confocal microscopy. Eur. J. Ophthalmol. 32, 11–12 (2022)

    Google Scholar 

  18. Meng, Y., et al.: Bilateral adaptive graph convolutional network on CT based COVID-19 diagnosis with uncertainty-aware consensus-assisted multiple instance learning. Med. Image Anal. 84, 102722 (2023)

    Article  Google Scholar 

  19. Meng, Y., et al.: Transportation object counting with graph-based adaptive auxiliary learning. IEEE Trans. Intell. Transp. Syst. 24(3), 3422–3437 (2022)

    Article  MathSciNet  Google Scholar 

  20. Meng, Y., et al.: Shape-aware weakly/semi-supervised optic disc and cup segmentation with regional/marginal consistency. In: Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022, Part IV, Singapore, 18–22 September 2022. pp. 524–534. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_50

  21. Meng, Y., et al.: Regression of instance boundary by aggregated CNN and GCN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 190–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_12

    Chapter  Google Scholar 

  22. Meng, Y., et al.: Artificial intelligence based analysis of corneal confocal microscopy images for diagnosing peripheral neuropathy: a binary classification model. J. Clin. Med. 12(4), 1284 (2023)

    Article  Google Scholar 

  23. Meng, Y., et al.: CNN-GCN aggregation enabled boundary regression for biomedical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 352–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_35

    Chapter  Google Scholar 

  24. Meng, Y., et al.: Bi-GCN: boundary-aware input-dependent graph convolution network for biomedical image segmentation. In: 32nd British Machine Vision Conference, BMVC 2021. British Machine Vision Association (2021)

    Google Scholar 

  25. Meng, Y., et al.: Dual consistency enabled weakly and semi-supervised optic disc and cup segmentation with dual adaptive graph convolutional networks. IEEE Trans. Med. Imaging 42, 416–429 (2022)

    Article  Google Scholar 

  26. Meng, Y., et al.: Spatial uncertainty-aware semi-supervised crowd counting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15549–15559 (2021)

    Google Scholar 

  27. Meng, Y., et al.: Graph-based region and boundary aggregation for biomedical image segmentation. IEEE Trans. Med. Imaging 41, 690–701 (2021)

    Article  MathSciNet  Google Scholar 

  28. Mukaka, M.M.: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24(3), 69–71 (2012)

    Google Scholar 

  29. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  30. Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

    Article  Google Scholar 

  31. Patefield, A., et al.: Deep learning using preoperative AS-OCT predicts graft detachment in DMEK. Trans. Vis. Sci. Technol. 12(5), 14 (2023)

    Article  Google Scholar 

  32. Preston, F.G., et al.: Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus and prediabetes. Diabetologia 65, 457–466 (2022). https://doi.org/10.1007/s00125-021-05617-x

    Article  Google Scholar 

  33. Robinson, J., Chuang, C.Y., Sra, S., Jegelka, S.: Contrastive learning with hard negative samples. arXiv preprint arXiv:2010.04592 (2020)

  34. Shi, Y., et al.: Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation. IEEE Trans. Med. Imaging 41(3), 608–620 (2021)

    Article  Google Scholar 

  35. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  36. Zeng, Y., et al.: MAEF-Net: multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Ultrasonics 127, 106855 (2023)

    Article  Google Scholar 

  37. Zhang, Y., Meng, Y., Zheng, Y.: Automatically segment the left atrium and scars from LGE-MRIs using a boundary-focused nnU-Net. In: Zhuang, X., Li, L., Wang, S., Wu, F. (eds.) Left Atrial and Scar Quantification and Segmentation, LAScarQS 2022. LNCS, vol. 13586, pp. 49–59. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31778-1_5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1263 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, Y., Zhang, Y., Xie, J., Duan, J., Zhao, Y., Zheng, Y. (2024). Weakly/Semi-supervised Left Ventricle Segmentation in 2D Echocardiography with Uncertain Region-Aware Contrastive Learning. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics