Skip to main content

Sparse Coding of Deep Residual Descriptors for Vein Recognition

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14463))

Included in the following conference series:

  • 344 Accesses

Abstract

Vein recognition has been drawing more attention recently because it is highly secure and reliable for practical biometric applications. However, the underlying issues such as uneven illumination, low contrast, and sparse patterns with high inter-class similarities make the traditional vein recognition systems based on hand-engineered features unreliable. To address the difficulty of direct training or fine-tuning a CNN with existing small-scale vein databases, a new knowledge transfer approach is formulated by using pre-trained CNN models together with a training dataset as a robust descriptor generation machine. A very discriminative model, sparse coding of residual descriptors (SCRD), is proposed by a hierarchical design of dictionary learning, coding, and classifier training procedures with the generated deep residual descriptors. Rigorous experiments are conducted with a high-quality hand-dorsa vein database, and superior recognition results compared with state-of-the-art models fully demonstrate the effectiveness of the proposed models. An additional experiment with the PolyU multispectral palmprint database is designed to illustrate the generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amira Yahi, S.D.: Multimodal biometric recognition systems using deep learning based on the finger vein and finger knuckle print fusion. IET Image Process. 14(15), 3859–3868 (2020)

    Article  Google Scholar 

  2. Pan, Z., Wang, J., Wang, G., Zhu, J.: Multi-scale deep representation aggregation for vein recognition. IEEE Trans. Inf. Forensics Secur. 16, 1–15 (2020)

    Article  Google Scholar 

  3. Pan, Z., Wang, J., Shen, Z., Han, S.: Disentangled representation and enhancement network for vein recognition. IEEE Trans. Circ. Syst. Video Technol. 33, 4164–4176 (2023)

    Article  Google Scholar 

  4. Maeda, Y., Hasegawa, T.: Analysis of finger vein variety in patients with various diseases using vein authentication technology. J. Biophotonics 12(4), e201800354 (2019)

    Article  Google Scholar 

  5. Huang, B., Dai, Y., Li, R., Tang, D., Li, W.: Finger-vein authentication based on wide line detector and pattern normalization. In: 20th International Conference on Pattern Recognition (ICPR), pp. 1269–1272. Istanbul (2010)

    Google Scholar 

  6. Pan, Z., Wang, J., Shen, Z., Chen, X., Li, M.: Multi-layer convolutional features concatenation with semantic feature selector for vein recognition. IEEE Access 7, 90608–90619 (2019)

    Article  Google Scholar 

  7. Cheong, W., Prahl, S., Welch, A.: A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26(12), 2166–2185 (1990)

    Article  Google Scholar 

  8. Lee, E., Park, K.: Image restoration of skin scattering and optical blurring for finger vein recognition. Opt. Lasers Eng. 49(7), 816–828 (2011)

    Article  Google Scholar 

  9. Yang, Y., Shi, Y.: Towards finger-vein image restoration and enhancement for finger-vein recognition. Inf. Sci. 268, 33–52 (2014)

    Article  Google Scholar 

  10. Wang, J., Wang, G., Li, M., Yu, W., Tian, H.: An improved hand vein image acquisition method based on the proposed image quality evaluation system. Comput. Model. New Technol. 18(11), 1204–1208 (2014)

    Google Scholar 

  11. Wang, J., Wang, G.: Quality-specific hand vein recognition system. IEEE Trans. Inf. Forensics Secur. 12(11), 2599–2610 (2017)

    Article  Google Scholar 

  12. Mulyono, D., Jinn, H.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587. Columbus, USA (2014)

    Google Scholar 

  13. Yang, W., Luo, W., Kang, W., Huang, Z., Wu, Q.: Fvras-net: an embedded finger-vein recognition and antispoofing system using a unified CNN. IEEE Trans. Instrum. Meas. 69(11), 8690–8701 (2020)

    Article  Google Scholar 

  14. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_20

    Chapter  Google Scholar 

  15. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1794–1801. Miami, USA (2009)

    Google Scholar 

  16. Koniusz, P., Yan, F., Gosselin, P., Mikolajczyk, K.: Higher-order occurrence pooling on mid-and low-level features: visual concept detection. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 313–326 (2017)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014)

  18. Mulyono, D., Jinn, H.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. Boston, USA (2015)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. Las Vegas, USA (2016)

    Google Scholar 

  20. Miura, N., Nagasaka, A., Miyatake, T.: Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Trans. Inf. Syst. 90(8), 1185–1194 (2007)

    Article  Google Scholar 

  21. Choi, J., Song, W., Kim, T., Lee, S., Kim, H.: Finger vein extraction using gradient normalization and principal curvature. In: SPIE Electronic Imaging, pp. 827–834. California, USA (2009)

    Google Scholar 

  22. Miura, N., Nagasaka, A., Miyatake, T.: Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach. Vis. Appl. 15(4), 194–203 (2004)

    Article  Google Scholar 

  23. Wang, J., Wang, G.: SIFT based vein recognition models: analysis and improvement. Comput. Math. Methods Med. 50(5), 1–14 (2017)

    Google Scholar 

  24. Chen, H., Lu, G., Wang, R.: A new palm vein matching method based on ICP algorithm. In: 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 1207–12118. Seoul, Korea (2009)

    Google Scholar 

  25. Zhang, D., Kong, W., You, J., Wong, M.: Online palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1041–1050 (2003)

    Article  Google Scholar 

  26. Zhou, Y., Kumar, A.: Human identification using palm-vein images. IEEE Trans. Inf. Forensics Secur. 6(4), 1259–1274 (2011)

    Article  Google Scholar 

  27. Sun, J., Abdulla, W.: Palm vein recognition by combining curvelet transform and Gabor filter. In: 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 314–321. Jinan, China (2013)

    Google Scholar 

  28. Zhou, Y., Liu, Y., Feng, Q., Yang, F., Huang, J., Nie, Y.: Palm-vein classification based on principal orientation features. PLoS ONE 9(11), e112429 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Scientific Innovation 2030 Major Project for New Generation of AI under Grant 2020AAA0107300. The Fundamental Research Funds for the Central Universities under Grant 2023Q N1077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Z., Qin, X., Pan, Z., Wang, J. (2023). Sparse Coding of Deep Residual Descriptors for Vein Recognition. In: Jia, W., et al. Biometric Recognition. CCBR 2023. Lecture Notes in Computer Science, vol 14463. Springer, Singapore. https://doi.org/10.1007/978-981-99-8565-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8565-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8564-7

  • Online ISBN: 978-981-99-8565-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics