Skip to main content

Reachability Based Uniform Controllability to Target Set with Evolution Function

  • Conference paper
  • First Online:
Dependable Software Engineering. Theories, Tools, and Applications (SETTA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14464))

  • 247 Accesses

Abstract

In this paper, we investigate the uniform controllability to target set for dynamical systems by designing controllers such that the trajectories evolving from the initial set can enter into the target set. For this purpose, we first introduce the evolution function (EF) for exactly describing the reachable set and give an over-approximation of the reachable set with high precision using the series representation of the evolution function. Subsequently, we propose an approximation approach for Hausdorff semi-distance with a bounded rectangular grid, which can be used to guide the selection of controllers. Based on the above two approximations, we design a heuristic framework to compute a piecewise constant controller, realizing the controllability. Moreover, in order to reduce the computational load, we improve our heuristic framework by the K-arm Bandit Model in reinforcement learning. It is worth noting that both of the heuristic algorithms may suffer from the risk of local optima. To avoid the potential dilemma, we additionally propose a reference trajectory based algorithm for further improvement. Finally, we use some benchmarks with comparisons to show the efficiency of our approach.

This work is supported by the National Key R &D Program of China (2022YFA1005103) and the National Natural Science Foundation of China (12371452).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Practical search techniques in path planning for autonomous driving. Ann Arbor 1001(48105), 18–80 (2008)

    Google Scholar 

  2. Stefanovski, J.: Fault tolerant control of descriptor systems with disturbances. IEEE TAC 64(3), 976–988 (2019)

    MathSciNet  Google Scholar 

  3. Kurzhanski, A.B., Mesyats, A.I.: The Hamiltonian formalism for problems of group control under obstacles. IEEE TAC 49(18), 570–575 (2016)

    Google Scholar 

  4. Fisac, J.F., Akametalu, A.K., et al.: A general safety framework for learning-based control in uncertain robotic systems. IEEE TAC 64(7), 2737–2752 (2018)

    MathSciNet  Google Scholar 

  5. Ornik, M., Broucke, M.E.: Chattering in the reach control problem. Automatica 89(1), 201–211 (2018)

    Article  MathSciNet  Google Scholar 

  6. Broucke, M.E.: Reach control on simplices by continuous state feedback. SIAM J. Control. Optim. 48(5), 3482–3500 (2010)

    Article  MathSciNet  Google Scholar 

  7. Kavralu, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1994)

    Google Scholar 

  8. Nevistic, V., Primbs, J.A.: Constrained nonlinear optimal control: a converse HJB approach. Technical Memorandum, No. CIT-CDS 96-021 (1996)

    Google Scholar 

  9. Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E., Kavraki, L.E.: Multiple query probabilistic roadmap planning using single query planning primitives. In: IEEE IROS, pp. 656–661 (2003)

    Google Scholar 

  10. Xu, J., Duindam, V., Alterovitz, R., Goldberg, K.: Nonlinear Systems Analysis, Stability and Control. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3108-8

    Book  Google Scholar 

  11. Klamka, J.: Controllability of dynamical systems. A survey. Bull. Pol. Acad. Sci.: Tech. Sci. 61(2), 335–342 (2013)

    Google Scholar 

  12. Khalaf, M.A., Lewis, F.L.: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica 41(5), 779–791 (2005)

    Article  MathSciNet  Google Scholar 

  13. Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for collisions-free multirobot systems. IEEE Trans. Robot. 33(3), 661–674 (2017)

    Article  Google Scholar 

  14. Fisac, J.F., Akametalu, A.K., Zeilinger, M.N., Kaynama, S., Gillula, J., Tomlin, C.J.: A general safety framework for learning-based control in uncertain robotic systems. IEEE TAC 64(7), 2737–2752 (2019)

    MathSciNet  Google Scholar 

  15. Bansal, S., Chen, M., Herbert, S., et al.: Hamilton-Jacobi reachability: a brief overview and recent advance. In: IEEE CDC, pp. 2242–2253 (2017)

    Google Scholar 

  16. Chen, M., Tomlin, C.J.: Exact and efficient Hamilton-Jacobi reachability for decoupled systems. In: IEEE CDC, pp. 1297–1303 (2015)

    Google Scholar 

  17. Dmitruk, N., Findeisen, R., Allgower, F.: Optimal measurement feedback control of finite-time continuous linear systems. IFAC Proc. Vol. 41(2), 15339–15344 (2008)

    Article  Google Scholar 

  18. Kurzhanski, A.B., Varaiya, P.: Optimization of output feedback control under set-membership uncertainty. J. Optim. Theory Appl. 151(1), 11–32 (2011)

    Article  MathSciNet  Google Scholar 

  19. Schurmann, B., Althoff, M.: Optimal control of sets of solutions to formally guarantee constraints of disturbed linear systems. In: American Control Conference, pp. 2522–2529 (2017)

    Google Scholar 

  20. Kochdumper, N., Gruber, F., Schürmann, B., et al.: AROC: a toolbox for automated reachset optimal controller synthesis. In: HSCC, pp. 1–6 (2021)

    Google Scholar 

  21. Tomlin, C.J., Pappas, G.J., Sastry, S.S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE TAC 43(4), 509–521 (2002)

    MathSciNet  Google Scholar 

  22. Koo, T.J., Pappas, G.J., Sastry, S.: Mode switching synthesis for reachability specifications. In: HSCC, pp. 333–346 (2004)

    Google Scholar 

  23. Lincoln, P., Tiwari, A.: Symbolic systems biology: hybrid modeling and analysis of biological networks. In: HSCC, pp. 660–672 (2004)

    Google Scholar 

  24. Li, M., She, Z.: Over- and under-approximations of reachable sets with series representations of evolution functions. IEEE TAC 66(3), 1414–1421 (2021)

    MathSciNet  Google Scholar 

  25. Wang, T.C., Lall, S., West, M.: Polynomial level-set method for polynomial system reachable set estimation. IEEE TAC 58(10), 2508–2521 (2013)

    MathSciNet  Google Scholar 

  26. Hu, R., Liu, K., She, Z.: Evolution function based reach-avoid verification for time-varying systems with disturbances. ACM Trans. Embed. Comput. Syst. (2023). https://doi.org/10.1145/3626099

    Article  Google Scholar 

  27. Hu, R., She, Z.: OURS: over- and under-approximating reachable sets for analytic time-invariant differential equations. J. Syst. Architect. 128, 102580 (2022)

    Article  Google Scholar 

  28. Kraft, D.: Computing the Hausdorff distance of two sets from their distance functions. J. Comput. Geom. Appl. 30(1), 19–49 (2020)

    Article  MathSciNet  Google Scholar 

  29. https://tumcps.github.io/CORA/

  30. Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Trans. Comput. Log. 7, 723–748 (2006)

    Article  MathSciNet  Google Scholar 

  31. Houska, B., Ferreau, H., Diehl, M.: ACADO toolkit - an open source framework for automatic control and dynamic optimization. Optimal Control Appl. Methods 32(3), 298–312 (2011)

    Article  MathSciNet  Google Scholar 

  32. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  33. Chen, M., Herbert, S.L., Vashishtha, M.S., Bansal, S., Tomlin, C.J.: Decomposition of reachable sets and tubes for a class of nonlinear systems. IEEE TAC 63(11), 3675–3688 (2018)

    MathSciNet  Google Scholar 

  34. https://tumcps.github.io/AROC/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhikun She .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geng, J., Hu, R., Liu, K., Li, Z., She, Z. (2024). Reachability Based Uniform Controllability to Target Set with Evolution Function. In: Hermanns, H., Sun, J., Bu, L. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2023. Lecture Notes in Computer Science, vol 14464. Springer, Singapore. https://doi.org/10.1007/978-981-99-8664-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8664-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8663-7

  • Online ISBN: 978-981-99-8664-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics