Skip to main content

Using Theory of Mind in Explanations for Fostering Transparency in Human-Robot Interaction

  • Conference paper
  • First Online:
Social Robotics (ICSR 2023)

Abstract

In human-robot interaction, addressing disparities in action perception is vital for fostering effective collaboration. Our study delves into the integration of explanatory mechanisms during robotic actions, focusing on aligning robot perspectives with the human’s knowledge and beliefs. A comprehensive study involving 143 participants showed that providing explanations significantly enhances transparency compared to scenarios where no explanations are offered. However, intriguingly, lower transparency ratings were observed when these explanations considered participants’ existing knowledge. This observation underscores the nuanced interplay between explanation mechanisms and human perception of transparency in the context of human-robot interaction. These preliminary findings contribute to emphasize the crucial role of explanations in enhancing transparency and highlight the need for further investigation to understand the multifaceted dynamics at play.

This work has been supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 955778 (G. Angelopoulos), by the Italian Ministry for Universities and Research (MUR) under the grant FAIR (MUR: PE0000013) (S. Rossi), and Italian PON R &I 2014-2020 - REACT-EU (CUP E65F21002920003) (A. Rossi).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambsdorf, J., et al.: Explain yourself! effects of explanations in human-robot interaction. In: 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 393–400. IEEE (2022)

    Google Scholar 

  2. Angelopoulos, G., Di Martino, C., Rossi, A., Rossi, S.: Unveiling the learning curve: enhancing transparency in robot’s learning with inner speech and emotions. In: 2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Busan, Republic of Korea, pp. 1922-1927(2023). https://doi.org/10.1109/RO-MAN57019.2023.10309352

  3. Angelopoulos, G., Rossi, A., L’Arco, G., Rossi, S.: Transparent interactive reinforcement learning using emotional behaviours. In: Cavallo, F., et al. (eds.) ICSR 2022. LNCS, vol. 13817, pp. 300–311. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-24667-8_27

    Chapter  Google Scholar 

  4. Cashmore, M., et al.: ROSPlan: planning in the robot operating system. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 25, pp. 333–341 (2015)

    Google Scholar 

  5. Cucciniello, I., Sangiovanni, S., Maggi, G., Rossi, S.: Mind perception in HRI: exploring users’ attribution of mental and emotional states to robots with different behavioural styles. Int. J. Soc. Robot. 15(5), 867–877 (2023)

    Article  Google Scholar 

  6. Felzmann, H., Fosch-Villaronga, E., Lutz, C., Tamo-Larrieux, A.: Robots and transparency: the multiple dimensions of transparency in the context of robot technologies. IEEE Robot. Autom. Mag. 26(2), 71–78 (2019)

    Article  Google Scholar 

  7. Kraus, M., Wagner, N., Untereiner, N., Minker, W.: Including social expectations for trustworthy proactive human-robot dialogue. In: Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, pp. 23–33 (2022)

    Google Scholar 

  8. McKenna, P.E., et al.: Theory of mind and trust in human-robot navigation. In: Proceedings of the 1st International Symposium on Trustworthy Autonomous Systems, pp. 1–5 (2023)

    Google Scholar 

  9. Milliez, G., Lallement, R., Fiore, M., Alami, R.: Using human knowledge awareness to adapt collaborative plan generation, explanation and monitoring. In: ACM/IEEE International Conference on HRI, pp. 43–50 (2016)

    Google Scholar 

  10. Nikolaidis, S., Kwon, M., Forlizzi, J., Srinivasa, S.: Planning with verbal communication for human-robot collaboration. ACM Trans. Hum. Robot Interact. (THRI) 7(3), 1–21 (2018)

    Article  Google Scholar 

  11. Rossi, A., Koay, K.L., Haring, K.S.: To err is robotic: understanding, preventing, and resolving robots’ failures in HRI

    Google Scholar 

  12. Schött, S.Y., Amin, R.M., Butz, A.: A literature survey of how to convey transparency in co-located human-robot interaction. Multimodal Technol. Interact. 7(3), 25 (2023)

    Article  Google Scholar 

  13. Shvo, M., Hari, R., O’Reilly, Z., Abolore, S., Wang, S.Y.N., McIlraith, S.A.: Proactive robotic assistance via theory of mind. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9148–9155 (2022)

    Google Scholar 

  14. Spatola, N., Kühnlenz, B., Cheng, G.: Perception and evaluation in human-robot interaction: the human-robot interaction evaluation scale (HRIES)-a multicomponent approach of anthropomorphism. Int. J. Soc. Roboti. 13(7), 1517–1539 (2021)

    Article  Google Scholar 

  15. Sreedharan, S., Chakraborti, T., Kambhampati, S.: Foundations of explanations as model reconciliation. Artif. Intell. 301, 103558 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stange, S., Hassan, T., Schröder, F., Konkol, J., Kopp, S.: Self-explaining social robots: an explainable behavior generation architecture for human-robot interaction. Front. Artif. Intell. 5, 87 (2022)

    Article  Google Scholar 

  17. Straten, C.L., Peter, J., Kühne, R., Barco, A.: Transparency about a robot’s lack of human psychological capacities: effects on child-robot perception and relationship formation. ACM Trans. Hum. Robot Interact. (THRI) 9(2), 1–22 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Angelopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angelopoulos, G., Imparato, P., Rossi, A., Rossi, S. (2024). Using Theory of Mind in Explanations for Fostering Transparency in Human-Robot Interaction. In: Ali, A.A., et al. Social Robotics. ICSR 2023. Lecture Notes in Computer Science(), vol 14454. Springer, Singapore. https://doi.org/10.1007/978-981-99-8718-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8718-4_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8717-7

  • Online ISBN: 978-981-99-8718-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics