Skip to main content

Sigma Protocols from Verifiable Secret Sharing and Their Applications

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

Sigma protocols are one of the most common and efficient zero-knowledge proofs (ZKPs). Over the decades, a large number of Sigma protocols are proposed, yet few works pay attention to the common design principal. In this work, we propose a generic framework of Sigma protocols for algebraic statements from verifiable secret sharing (VSS) schemes. Our framework provides a general and unified approach to understanding Sigma protocols. It not only neatly explains the classic protocols such as Schnorr, Guillou-Quisquater and Okamoto protocols, but also leads to new Sigma protocols that were not previously known. Furthermore, we show an application of our framework in designing ZKPs for composite statements, which contain both algebraic and non-algebraic statements. We give a generic construction of non-interactive ZKPs for composite statements by combining Sigma protocols from VSS and ZKPs following MPC-in-the-head paradigm in a seamless way via a technique of witness sharing reusing. Our construction has advantages of requiring no “glue” proofs for combining algebraic and non-algebraic statements. By instantiating our construction using Ligero++ (Bhadauria et al., CCS 2020) and designing an associated Sigma protocol from VSS, we obtain a concrete ZKP for composite statements which achieves a tradeoff between running time and proof size, thus resolving the open problem left by Backes et al. (PKC 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the sake of convenience, we will not distinguish between computational and information-theoretic soundness, and thus refer to both proofs and arguments as “proofs”.

  2. 2.

    Actually, it is hard to give a more efficient ZKP for composite statement using Ligero/Ligero++ than those using ZKBoo/ZKB++, since the former two protocols reduce the proof size, at the cost of increasing the computation.

  3. 3.

    The value n could even be exponential in security parameter \(\lambda \) (e.g. the size of a finite field).

References

  1. Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Non-interactive composition of sigma-protocols via share-then-hash. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 749–773. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_25

    Chapter  Google Scholar 

  2. Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Acyclicity programming for sigma-protocols. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 435–465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_15

    Chapter  Google Scholar 

  3. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Takahashi, A.: ECLIPSE: enhanced compiling method for Pedersen-committed zkSNARK engines. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13177, pp. 584–614. Springer, Cham (2022)

    Chapter  Google Scholar 

  4. Attema, T., Cramer, R., Kohl, L.: A compressed \(\Sigma \)-protocol theory for lattices. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 549–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_19

    Chapter  Google Scholar 

  5. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_22

    Chapter  Google Scholar 

  6. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof systems. IACR Cryptology ePrint Archive (2022)

    Google Scholar 

  7. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Lightweight sublinear arguments without a trusted setup. In: ACM CCS, Ligero (2017)

    Google Scholar 

  8. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Short proofs for confidential transactions and more. In: IEEE S &P, Bulletproofs (2018)

    Google Scholar 

  9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity (2018). http://eprint.iacr.org/2018/046

  10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  Google Scholar 

  11. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Decentralized anonymous payments from bitcoin. In: IEEE S &P, Zerocash (2014)

    Google Scholar 

  12. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4

    Chapter  Google Scholar 

  13. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

    Chapter  Google Scholar 

  14. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_7

    Chapter  Google Scholar 

  15. Bhadauria R., Fang Z., Hazay C., Venkitasubramaniam M., Xie T., Zhang Y.: Ligero++: a new optimized sublinear IoP. In: ACM CCS (2020)

    Google Scholar 

  16. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC (1988)

    Google Scholar 

  17. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-interactive zero-knowledge proofs in cross-domains without trusted setup. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 286–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_10

    Chapter  Google Scholar 

  18. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC (1988)

    Google Scholar 

  19. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: ACM CCS (2017)

    Google Scholar 

  20. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  21. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure election scheme (extended abstract). In: FOCS (1985)

    Google Scholar 

  22. Campanelli, M., Fiore, D., Querol, A.: Modular design and composition of succinct zero-knowledge proofs. In: ACM CCS, Legosnark (2019)

    Google Scholar 

  23. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic and non-algebraic statements with applications to privacy preserving credentials. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_18

    Chapter  Google Scholar 

  24. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: FOCS (1985)

    Google Scholar 

  25. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable srs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26

    Chapter  Google Scholar 

  26. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  27. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27

    Chapter  Google Scholar 

  28. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D. thesis (1996)

    Google Scholar 

  29. Cui, H., Zhang, K.: A simple post-quantum non-interactive zero-knowledge proof from garbled circuits. In: Yu, Yu., Yung, M. (eds.) Inscrypt 2021. LNCS, vol. 13007, pp. 269–280. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88323-2_14

    Chapter  Google Scholar 

  30. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS (1987)

    Google Scholar 

  31. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: STOC (1987)

    Google Scholar 

  32. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  33. Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: STOC (1992)

    Google Scholar 

  34. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  35. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9

    Chapter  Google Scholar 

  36. Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.: Batching Schnorr identification scheme with applications to privacy-preserving authorization and low-bandwidth communication devices. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 276–292. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_20

    Chapter  Google Scholar 

  37. Giacomelli, I., Madsen, J., Orlandi, C.: Faster zero-knowledge for Boolean circuits. In: USENIX, Zkboo (2016)

    Google Scholar 

  38. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC (1985)

    Google Scholar 

  39. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_11

    Chapter  Google Scholar 

  40. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)

    Google Scholar 

  41. Guillou, L.C., Quisquater, J.-J.: A “paradoxical’’ indentity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_16

    Chapter  Google Scholar 

  42. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_12

    Chapter  Google Scholar 

  43. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  44. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  45. Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the discrete log setting, revisited. In: ACM CCS (2019)

    Google Scholar 

  46. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: IEEE CCC (2007)

    Google Scholar 

  47. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC (2007)

    Google Scholar 

  48. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: ACM CCS (2013)

    Google Scholar 

  49. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC (1992)

    Google Scholar 

  50. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: ACM CCS (2018)

    Google Scholar 

  51. Kalai, Y.T., Raz, R.: Interactive PCP. In: ICALP (2008)

    Google Scholar 

  52. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_1

    Chapter  Google Scholar 

  53. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

    Chapter  Google Scholar 

  54. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. Des. Codes Cryptogr. 77, 663–676 (2015)

    Google Scholar 

  55. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks from linear-size universal and updatable structured reference strings. : ACM CCS (2019)

    Google Scholar 

  56. Micali, S.: CS proofs (extended abstracts). In: FOCS (1994)

    Google Scholar 

  57. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC (1990)

    Google Scholar 

  58. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_3

    Chapter  Google Scholar 

  59. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  60. Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput. (1980)

    Google Scholar 

  61. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC (1989)

    Google Scholar 

  62. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. In: STOC (2016)

    Google Scholar 

  63. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS (1999)

    Google Scholar 

  64. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. (1991)

    Google Scholar 

  65. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25

    Chapter  Google Scholar 

  66. Shamir, A.: How to share a secret. CACM (1979)

    Google Scholar 

  67. Thaler, J.: Proofs, arguments, and zero-knowledge. Found. Trends® Privacy Secur. (2022)

    Google Scholar 

  68. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: IEEE S &P (2020)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments. This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1000600), the National Natural Science Foundation of China (Grant No. 62272269, No. 61932019, and No. 62372447), Taishan Scholar Program of Shandong Province, and Beijing Natural Science Foundation (Grant No. M22003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Chen, Y., Yao, C., Wang, Z. (2023). Sigma Protocols from Verifiable Secret Sharing and Their Applications. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14439. Springer, Singapore. https://doi.org/10.1007/978-981-99-8724-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8724-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8723-8

  • Online ISBN: 978-981-99-8724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics