Abstract
Sigma protocols are one of the most common and efficient zero-knowledge proofs (ZKPs). Over the decades, a large number of Sigma protocols are proposed, yet few works pay attention to the common design principal. In this work, we propose a generic framework of Sigma protocols for algebraic statements from verifiable secret sharing (VSS) schemes. Our framework provides a general and unified approach to understanding Sigma protocols. It not only neatly explains the classic protocols such as Schnorr, Guillou-Quisquater and Okamoto protocols, but also leads to new Sigma protocols that were not previously known. Furthermore, we show an application of our framework in designing ZKPs for composite statements, which contain both algebraic and non-algebraic statements. We give a generic construction of non-interactive ZKPs for composite statements by combining Sigma protocols from VSS and ZKPs following MPC-in-the-head paradigm in a seamless way via a technique of witness sharing reusing. Our construction has advantages of requiring no “glue” proofs for combining algebraic and non-algebraic statements. By instantiating our construction using Ligero++ (Bhadauria et al., CCS 2020) and designing an associated Sigma protocol from VSS, we obtain a concrete ZKP for composite statements which achieves a tradeoff between running time and proof size, thus resolving the open problem left by Backes et al. (PKC 2019).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For the sake of convenience, we will not distinguish between computational and information-theoretic soundness, and thus refer to both proofs and arguments as “proofs”.
- 2.
Actually, it is hard to give a more efficient ZKP for composite statement using Ligero/Ligero++ than those using ZKBoo/ZKB++, since the former two protocols reduce the proof size, at the cost of increasing the computation.
- 3.
The value n could even be exponential in security parameter \(\lambda \) (e.g. the size of a finite field).
References
Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Non-interactive composition of sigma-protocols via share-then-hash. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 749–773. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_25
Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Acyclicity programming for sigma-protocols. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 435–465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_15
Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Takahashi, A.: ECLIPSE: enhanced compiling method for Pedersen-committed zkSNARK engines. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13177, pp. 584–614. Springer, Cham (2022)
Attema, T., Cramer, R., Kohl, L.: A compressed \(\Sigma \)-protocol theory for lattices. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 549–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_19
Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_22
Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof systems. IACR Cryptology ePrint Archive (2022)
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Lightweight sublinear arguments without a trusted setup. In: ACM CCS, Ligero (2017)
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Short proofs for confidential transactions and more. In: IEEE S &P, Bulletproofs (2018)
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity (2018). http://eprint.iacr.org/2018/046
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Decentralized anonymous payments from bitcoin. In: IEEE S &P, Zerocash (2014)
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4
Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2
Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_7
Bhadauria R., Fang Z., Hazay C., Venkitasubramaniam M., Xie T., Zhang Y.: Ligero++: a new optimized sublinear IoP. In: ACM CCS (2020)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC (1988)
Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-interactive zero-knowledge proofs in cross-domains without trusted setup. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 286–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_10
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC (1988)
Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: ACM CCS (2017)
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure election scheme (extended abstract). In: FOCS (1985)
Campanelli, M., Fiore, D., Querol, A.: Modular design and composition of succinct zero-knowledge proofs. In: ACM CCS, Legosnark (2019)
Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic and non-algebraic statements with applications to privacy preserving credentials. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_18
Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: FOCS (1985)
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable srs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7
Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27
Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D. thesis (1996)
Cui, H., Zhang, K.: A simple post-quantum non-interactive zero-knowledge proof from garbled circuits. In: Yu, Yu., Yung, M. (eds.) Inscrypt 2021. LNCS, vol. 13007, pp. 269–280. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88323-2_14
Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS (1987)
Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: STOC (1987)
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: STOC (1992)
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9
Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.: Batching Schnorr identification scheme with applications to privacy-preserving authorization and low-bandwidth communication devices. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 276–292. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_20
Giacomelli, I., Madsen, J., Orlandi, C.: Faster zero-knowledge for Boolean circuits. In: USENIX, Zkboo (2016)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC (1985)
Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_11
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)
Guillou, L.C., Quisquater, J.-J.: A “paradoxical’’ indentity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_16
Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_12
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the discrete log setting, revisited. In: ACM CCS (2019)
Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: IEEE CCC (2007)
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC (2007)
Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: ACM CCS (2013)
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC (1992)
Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: ACM CCS (2018)
Kalai, Y.T., Raz, R.: Interactive PCP. In: ICALP (2008)
Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_1
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. Des. Codes Cryptogr. 77, 663–676 (2015)
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks from linear-size universal and updatable structured reference strings. : ACM CCS (2019)
Micali, S.: CS proofs (extended abstracts). In: FOCS (1994)
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC (1990)
Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_3
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput. (1980)
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC (1989)
Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. In: STOC (2016)
Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS (1999)
Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. (1991)
Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Shamir, A.: How to share a secret. CACM (1979)
Thaler, J.: Proofs, arguments, and zero-knowledge. Found. Trends® Privacy Secur. (2022)
Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: IEEE S &P (2020)
Acknowledgements
We thank the anonymous reviewers for their valuable comments. This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1000600), the National Natural Science Foundation of China (Grant No. 62272269, No. 61932019, and No. 62372447), Taishan Scholar Program of Shandong Province, and Beijing Natural Science Foundation (Grant No. M22003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Zhang, M., Chen, Y., Yao, C., Wang, Z. (2023). Sigma Protocols from Verifiable Secret Sharing and Their Applications. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14439. Springer, Singapore. https://doi.org/10.1007/978-981-99-8724-5_7
Download citation
DOI: https://doi.org/10.1007/978-981-99-8724-5_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8723-8
Online ISBN: 978-981-99-8724-5
eBook Packages: Computer ScienceComputer Science (R0)