Skip to main content

Exploiting the Symmetry of \(\mathbb {Z}^n\): Randomization and the Automorphism Problem

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14441))

  • 811 Accesses

Abstract

\(\mathbb {Z}^n\) is one of the simplest types of lattices, but the computational problems on its rotations, such as \(\mathbb {Z}\)SVP and \(\mathbb {Z}\)LIP, have been of great interest in cryptography. Recent advances have been made in building cryptographic primitives based on these problems, as well as in developing new algorithms for solving them. However, the theoretical complexity of \(\mathbb {Z}\)SVP and \(\mathbb {Z}\)LIP are still not well understood.

In this work, we study the problems on rotations of \(\mathbb {Z}^n\) by exploiting the symmetry property. We introduce a randomization framework that can be roughly viewed as ‘applying random automorphisms’ to the output of an oracle, without accessing the automorphism group. Using this framework, we obtain new reduction results for rotations of \(\mathbb {Z}^n\). First, we present a reduction from \(\mathbb {Z}\)LIP to \(\mathbb {Z}\)SCVP. Here \(\mathbb {Z}\)SCVP is the problem of finding the shortest characteristic vectors, which is a special case of CVP where the target vector is a deep hole of the lattice. Moreover, we prove a reduction from \(\mathbb {Z}\)SVP to \(\gamma \)-\(\mathbb {Z}\)SVP for any constant \(\gamma = O(1)\) in the same dimension, which implies that \(\mathbb {Z}\)SVP is as hard as its approximate version for any constant approximation factor. Second, we investigate the problem of finding a nontrivial automorphism for a given lattice, which is called LAP. Specifically, we use the randomization framework to show that \(\mathbb {Z}\)LAP is as hard as \(\mathbb {Z}\)LIP. We note that our result can be viewed as a \(\mathbb {Z}^n\)-analogue of Lenstra and Silverberg’s result in [JoC2017], but with a different assumption: they assume the G-lattice structure, while we assume the access to an oracle that outputs a nontrivial automorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact, the signed permutation group \(\mathcal {S}^{\pm }_n\) is the largest possible automorphism group among all lattices in \(\mathbb {R}^n\), with the exception of dimensions \(n=2,4,6,7,8,9,10\) [44].

  2. 2.

    Strictly speaking, we can efficiently generate matrices in \(O_n(\mathbb {R})\) distributed with Haar measure. We refer to Sect. 3 for a detailed discussion.

  3. 3.

    This differs slightly from our definition of LAP, which only asks to find a nontrivial automorphism. We remark that for \(\mathbb {Z}\)LAP, finding a nontrivial automorphism and finding a generating set of the automorphism group are equivalent by Theorem 1.3.

  4. 4.

    Note that \(\text {ord}(\phi ) \mid |S_n^\pm |\), then each prime divisor of \(\text {ord}(\phi )\) is no more than n. Therefore p can be computed efficiently.

  5. 5.

    The second method described in Sect. 3 can also be used to approximate the gradient \(\nabla g_2(\textbf{x})\).

  6. 6.

    ‘Semidirect product’ means that \(\mathcal {S}^{\pm }_n = \mathcal {D} \mathcal {S}_n\), \(\mathcal {D} \cap \mathcal {S}_n = \{\textbf{I} _n\}\) and \(\mathcal {D}\) is a normal subgroup of \(\mathcal {S}^{\pm }_n\). This implies that for any \(\textbf{T} \in \mathcal {S}^{\pm }_n\), there exist unique \(\textbf{D} \in \mathcal {D}\) and \(\textbf{P} \in \mathcal {S}_n\) such that \(\textbf{T} = \textbf{P} \textbf{D} \).

  7. 7.

    This is consistent with the notation \(x_i = \langle \textbf{x}, \textbf{v} _i \rangle \) in Sect. 4.2.

References

  1. Aggarwal, D., Bennett, H., Golovnev, A., Stephens-Davidowitz, N.: Fine-grained hardness of CVP(P) - everything that we can prove (and nothing else). In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, 10–13 January 2021, pp. 1816–1835. SIAM (2021). https://doi.org/10.1137/1.9781611976465.109

  2. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the shortest vector problem in 2\({}^{\text{n}}\) time using discrete gaussian sampling: extended abstract. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC 2015), Portland, 14–17 June 2015, pp. 733–742. ACM (2015). https://doi.org/10.1145/2746539.2746606

  3. Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduction, revisited—filling the gaps in SVP approximation. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 274–295. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_10

  4. Aggarwal, D., Li, Z., Stephens-Davidowitz, N.: A \(2^{n/2}\)-time algorithm for \(\sqrt{n}\)-SVP and \(\sqrt{n}\)-hermite SVP, and an improved time-approximation tradeoff for (H)SVP. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 467–497. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_17

  5. Aggarwal, D., Stephens-Davidowitz, N.: Just take the average! an embarrassingly simple \(2{^{n}}\)-time algorithm for SVP (and CVP). In: Seidel, R. (ed.) 1st Symposium on Simplicity in Algorithms, SOSA 2018, 7–10 January 2018, New Orleans. OASIcs, vol. 61, pp. 12:1–12:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.12

  6. Aggarwal, D., Ursu, B., Vaudenay, S.: Faster sieving algorithm for approximate SVP with constant approximation factors. Cryptology ePrint Archive (2019)

    Google Scholar 

  7. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2016) Cambridge, 18–21 June 2016, pp. 684–697. ACM (2016). https://doi.org/10.1145/2897518.2897542

  8. Bennett, H.: The complexity of the shortest vector problem. Electron. Colloquium Comput. Complex. TR22-170 (2022). https://eccc.weizmann.ac.il/report/2022/170

  9. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how hard are rotations of \({Z}^{{n}}\)? algorithms and cryptography with the simplest lattice. IACR Cryptol. ePrint Arch., p. 1548 (2021). https://eprint.iacr.org/2021/1548

  10. Bennett, H., Golovnev, A., Stephens-Davidowitz, N.: On the quantitative hardness of CVP. In: Umans, C. (ed.) 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), Berkeley, 15–17 October 2017, pp. 13–24. IEEE Computer Society (2017). https://doi.org/10.1109/FOCS.2017.11

  11. Blanks, T.L., Miller, S.D.: Generating cryptographically-strong random lattice bases and recognizing rotations of \(\mathbb{Z}^n\). In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 319–338. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_17

  12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference (STOC 2013), Palo Alto, 1–4 June 2013, pp. 575–584. ACM (2013). https://doi.org/10.1145/2488608.2488680

  13. Cai, J., Nerurkar, A.: An improved worst-case to average-case connection for lattice problems. In: 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), Miami Beach, 19–22 October 1997, pp. 468–477. IEEE Computer Society (1997). https://doi.org/10.1109/SFCS.1997.646135

  14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

  15. Collins, B., Śniady, P.: Integration with respect to the haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264(3), 773–795 (2006)

    Article  MathSciNet  Google Scholar 

  16. Diaconis, P., Shahshahani, M.: The subgroup algorithm for generating uniform random variables. Probab. Eng. Inf. Sci. 1(1), 15–32 (1987)

    Article  Google Scholar 

  17. Ducas, L., Gibbons, S.: Hull attacks on the lattice isomorphism problem. IACR Cryptol. ePrint Arch., p. 194 (2023). https://eprint.iacr.org/2023/194

  18. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.P.J.: Hawk: module LIP makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13794, pp. 65–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22972-5_3

  19. Ducas, L., van Woerden, W.P.J.: On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 643–673. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_23

  20. Ducas, L.: Provable lattice reduction of \({Z}^n\) with blocksize \(n/2\). Cryptology ePrint Archive, Paper 2023/447 (2023). https://eprint.iacr.org/2023/447

  21. Dutour Sikirić, M., Haensch, A., Voight, J., van Woerden, W.P.: A canonical form for positive definite matrices. Open Book Ser. 4(1), 179–195 (2020)

    Article  MathSciNet  Google Scholar 

  22. Eisenträger, K., Hallgren, S., Kitaev, A.Y., Song, F.: A quantum algorithm for computing the unit group of an arbitrary degree number field. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC 2014, New York, 31 May–03 June 2014, pp. 293–302. ACM (2014). https://doi.org/10.1145/2591796.2591860

  23. Geißler, K., Smart, N.P.: Computing the M = U U\({}^{\text{ t }}\) integer matrix decomposition. In: Paterson, K.G. (ed.) Cryptography and Coding. LNCS, vol. 2898, pp. 223–233. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_18

  24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, 17–20 May 2008, pp. 197–206. ACM (2008). https://doi.org/10.1145/1374376.1374407

  25. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_20

  26. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Jr., B.S.K. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

  27. Haviv, I., Regev, O.: Hardness of the covering radius problem on lattices. Chic. J. Theor. Comput. Sci. (2012). https://cjtcs.cs.uchicago.edu/articles/2012/4/contents.html

  28. Haviv, I., Regev, O.: On the lattice isomorphism problem. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), Portland, 5–7 January 2014, pp. 391–404. SIAM (2014). https://doi.org/10.1137/1.9781611973402.29

  29. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In: The Collected Works of Wassily Hoeffding, pp. 409–426 (1994)

    Google Scholar 

  30. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9

  31. Hunkenschröder, C.: Deciding whether a lattice has an orthonormal basis is in co-np. arXiv preprint arXiv:1910.03838 (2019)

  32. Lenstra, H.W., Jr., Silverberg, A.: Revisiting the gentry-szydlo algorithm. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 280–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_16

  33. Lenstra, H.W., Jr., Silverberg, A.: Lattices with symmetry. J. Cryptol. 30(3), 760–804 (2017). https://doi.org/10.1007/s00145-016-9235-7

    Article  MathSciNet  Google Scholar 

  34. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In: Proceedings of the 45th Symposium on Foundations of Computer Science (FOCS 2004), October 17–19 2004, Rome, pp. 126–135. IEEE Computer Society (2004). https://doi.org/10.1109/FOCS.2004.31

  35. Köbler, J., Schöning, U., Torán, J.: The graph isomorphism problem: its structural complexity. Prog. Theor. Comput. Sci., Birkhäuser/Springer (1993). https://doi.org/10.1007/978-1-4612-0333-9

  36. Kuperberg, G.: The hidden subgroup problem for infinite groups (2020). https://simons.berkeley.edu/sites/default/files/docs/21261/berkeley.pdf

  37. Kuperberg, G.: The hidden subgroup problem for \(\mathbb{Z} ^k\) for infinite-index subgroups (2022). https://simons.berkeley.edu/sites/default/files/docs/21261/berkeley.pdf

  38. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Annalen 261, 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  39. Liu, M., Wang, X., Xu, G., Zheng, X.: Shortest lattice vectors in the presence of gaps. Cryptology ePrint Archive (2011)

    Google Scholar 

  40. Luks, E.M.: Permutation groups and polynomial-time computation. In: Finkelstein, L., Kantor, W.M. (eds.) Groups and Computation, Proceedings of a DIMACS Workshop, New Brunswick, 7–10 October 1991. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 11, pp. 139–175. DIMACS/AMS (1991). https://doi.org/10.1090/dimacs/011/11

  41. Martinet, J.: Perfect Lattices in Euclidean Spaces, vol. 327. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-05167-2

  42. Mezzadri, F.: How to generate random matrices from the classical compact groups. arXiv preprint arXiv:math-ph/0609050 (2006)

  43. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_17

  44. Elkies, N.D.: Intro to SPLAG (2002). https://people.math.harvard.edu/~elkies/M55a.02/lattice.html

  45. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016). https://doi.org/10.1561/0400000074

    Article  MathSciNet  Google Scholar 

  46. Plesken, W., Souvignier, B.: Computing isometries of lattices. J. Symb. Comput. 24(3–4), 327–334 (1997)

    Article  MathSciNet  Google Scholar 

  47. Regev, O.: Quantum computation and lattice problems. In: Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16–19 November 2002, Vancouver, pp. 520–529. IEEE Computer Society (2002). https://doi.org/10.1109/SFCS.2002.1181976

  48. Regev, O., Stephens-Davidowitz, N.: A reverse minkowski theorem. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), Montreal, 19–23 June 2017, pp. 941–953. ACM (2017). https://doi.org/10.1145/3055399.3055434

  49. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, 20–22 November 1994, pp. 124–134. IEEE Computer Society (1994). https://doi.org/10.1109/SFCS.1994.365700

  50. Sikiric, M.D., Schürmann, A., Vallentin, F.: Complexity and algorithms for computing voronoi cells of lattices. Math. Comput. 78(267), 1713–1731 (2009). https://doi.org/10.1090/S0025-5718-09-02224-8

  51. Stephens-Davidowitz, N.: Search-to-decision reductions for lattice problems with approximation factors (slightly) greater than one. In: Jansen, K., Mathieu, C., Rolim, J.D.P., Umans, C. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, 7–9 September 2016, Paris. LIPIcs, vol. 60, pp. 19:1–19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.19

  52. Stewart, G.W.: The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17(3), 403–409 (1980)

    Article  MathSciNet  Google Scholar 

  53. Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 433–448. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_27

  54. Wei, W., Liu, M., Wang, X.: Finding shortest lattice vectors in the presence of gaps. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 239–257. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_13

Download references

Acknowledgments

We thank the anonymous reviewers from ASIACRYPT 2023 for the valuable comments. We thank Yilei Chen, Ji Luo, Shihe Ma and Shuoxun Xu for helpful conversations. This work is supported by the National Key R &D Program of China (2018YFA0704701, 2020YFA0309705), Shandong Key Research and Development Program (2020ZLYS09), the Major Scientific and Technological Innovation Project of Shandong, China (2019JZZY010133), the Major Program of Guangdong Basic and Applied Research (2019B030302008), the Mathematical Tianyuan Fund of the National Natural Science Foundation of China (12226006) and the National Natural Science Foundation of China (62102216) and Tsinghua University Dushi Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anyu Wang .

Editor information

Editors and Affiliations

Appendices

Appendix A Proof of the Toy Example

With respect to the oracle \(\mathcal {O}\), the rotated square is determined by the angle \(\theta \) between the line connecting its vertex on the first quadrant to the origin O and the positive direction of the x-axis. Denoted the rotated square by \(\square _{\theta },\theta \in [0,\frac{\pi }{2})\). Note we can regard \(\theta \) as functional of \(\rho \), and write \(\theta [\rho ]=\theta [\rho +\frac{\pi }{2}]\). We’ll show that,

$$\text {Pr}_{\rho \leftarrow G}[\rho ^{-1}\mathcal {O}(\square _{\theta [\rho ]})=i]=\frac{1}{4},\,\forall i\in \mathbb {Z}/4\mathbb {Z}.$$

Proof

For any \(i\in \mathbb {Z}/4\mathbb {Z}\), \(\text {Pr}_{\rho \leftarrow G}[\rho ^{-1}\mathcal {O}(\square _{\theta [\rho ]})=i]\) is a functional about \(\rho \) which is a distribution on \(G=\mathbb {R}/2\pi \mathbb {Z}\). Then we have

$$\begin{aligned} \text {Pr}_{\rho \leftarrow G}[\rho ^{-1}\mathcal {O}(\square _{\theta [\rho ]})=i]&= \text {Pr}_{\rho \leftarrow G}[\mathcal {O}(\square _{\theta [\rho ]})=\rho (i)]\\ &=\text {Pr}_{_{\rho +\frac{\pi }{2} \leftarrow G}}[\mathcal {O}(\square _{\theta [\rho +\frac{\pi }{2}]})=(\rho +\frac{\pi }{2})(i)]\\ &=\text {Pr}_{_{\rho +\frac{\pi }{2} \leftarrow G}}[\mathcal {O}(\square _{\theta [\rho ]})=\rho (i+1)]\\ &=\text {Pr}_{_{\rho \leftarrow G}}[\mathcal {O}(\square _{\theta [\rho ]})=\rho (i+1)]. \end{aligned}$$

This means \(\forall i\in \mathbb {Z}/4\mathbb {Z},\,\text {Pr}_{\rho \leftarrow G}[\rho ^{-1}\mathcal {O}(\square _{\theta [\rho ]})=i]=\frac{1}{4}.\)    \(\square \)

Appendix B Proof of the Property of the Characteristic Vectors

Lemma 2.6. Assume \(\textbf{B}=(\textbf{b}_1,...,\textbf{b}_n)\) is a basis of \(\mathcal {L}\) and \(\textbf{B}^{-\top } = (\textbf{d}_1,...,\textbf{d}_n)\), then it has:

  1. 1)

    \(\textbf{w}=\sum _{i=1}^n\left\| \textbf{d}_i\right\| ^2 \textbf{b}_i\) is a characteristic vector of \(\mathcal {L}\).

  2. 2)

    \(\chi (\mathcal {L}) = \textbf{w}+2\mathcal {L}\) for any characteristic vector \(\textbf{w} \in \chi (\mathcal {L})\).

  3. 3)

    \(\textbf{w}\) is a characteristic vector if and only if \(\langle \textbf{w}, \textbf{b}_i \rangle \equiv \langle \textbf{b}_i, \textbf{b}_i \rangle \mod 2 \) for \(i\in [n]\).

Proof

  1. 1)

    Let \(\textbf{v}=\sum _{i=1}^{n} v_i \textbf{d}_i \in \mathcal {L}(\textbf{B})\), then \(\langle \textbf{w},\textbf{v}\rangle =\langle \sum _{i=1}^n\left\| \textbf{d}_i\right\| ^2 \textbf{b}_i, \sum _{i=1}^{n} v_i \textbf{d}_i \rangle \) \(= \sum _{i=1}^{n}v_i \left\| \textbf{d}_i\right\| ^2 \equiv \sum _{i=1}^{n}v^2_i\left\| \textbf{d}_i\right\| ^2 \equiv \langle \textbf{v},\textbf{v}\rangle \text { mod } 2\), we used \(v_i\equiv v^2_i \text { mod } 2\). Thus \(\textbf{w}\) is a characteristic vector.

  2. 2)

    Assume \(\textbf{w}\) is a characteristic vector of \(\mathcal {L}\), then for any \(\textbf{x} \in \mathcal {L}\), \(\textbf{w}+2\textbf{x}\) is also a characteristic vector of \(\mathcal {L}\), because \(\langle \textbf{w}+2\textbf{x}, \textbf{v} \rangle = \langle \textbf{w},\textbf{v} \rangle + 2\langle \textbf{x}, \textbf{v} \rangle \equiv \langle \textbf{w},\textbf{v} \rangle \equiv \langle \textbf{v},\textbf{v} \rangle \text { mod } 2\). On the other hand, if \(\textbf{w}'=\sum _{i=1}^{n} a_i \textbf{b}_i \in \chi (\mathcal {L})\), then \(a_i=\langle \textbf{w}',\textbf{d}_i \rangle \equiv \langle \textbf{d}_i,\textbf{d}_i \rangle = \left\| \textbf{d}_i\right\| ^2 \text { mod } 2\), thus for any \(i \in [n]\), \(a_i \equiv \left\| \textbf{d}_i\right\| ^2 \text { mod } 2\) and we know \(\textbf{w}=\sum _{i=1}^n\left\| \textbf{d}_i\right\| ^2 \textbf{b}_i\in \chi (\mathcal {L})\), thus \(\textbf{w}'=\textbf{w}+2\mathcal {L}\). Thus \(\chi (\mathcal {L})\) is a coset of \(\textbf{w}+2\mathcal {L}\), where \(\textbf{w}\) is any element in \(\chi (\mathcal {L})\).

  3. 3)

    Obviously, if \(\textbf{w}\in \chi (\mathcal {L})\), \(\forall \, i\in [n],\, \langle \textbf{w}, \textbf{b}_i \rangle \equiv \langle \textbf{b}_i, \textbf{b}_i \rangle \text { mod } 2 \). On the other hand, if \(\textbf{w}\in \mathcal {L}\) satisfying \(\forall \, i\in [n],\, \langle \textbf{w}, \textbf{b}_i \rangle \equiv \langle \textbf{b}_i, \textbf{b}_i \rangle \text { mod } 2 \). Then for any \(\textbf{v}=\sum ^{n}_{i=1} v_i \textbf{b}_i \in \mathcal {L}\), without loss of generality, assume \(v_i \equiv 1 \text { mod } 2\) for \(1 \le i \le k\), and \(v_i \equiv 0 \text { mod } 2\) for \(k+1 \le i \le n\). Thus we have \(\langle \textbf{w}, \textbf{v} \rangle \equiv \langle \textbf{w}, \textbf{b}_1+\ldots + \textbf{b}_k \rangle \equiv \sum _{i=1}^{k}\langle \textbf{w}, \textbf{b}_i \rangle \equiv \sum _{i=1}^{k} \langle \textbf{b}_i, \textbf{b}_i \rangle \equiv \langle \textbf{v}, \textbf{v} \rangle \text { mod } 2 \).   \(\square \)

Lemma 2.7. Suppose \(\mathcal {L} \cong \mathbb {Z}^n \). Assume \(\textbf{B}=\textbf{O}\textbf{U}\) is a basis of \(\mathcal {L}\), where \(\textbf{O}\in {O}_n(\mathbb {R})\) and \(\textbf{U}\in GL_n(\mathbb {Z}^n)\). Then it has:

  1. 1)

    \(\chi (\mathcal {L}) =\{\textbf{O}\textbf{z} : \textbf{z}\in \mathbb {Z}^n \text { such that } \textbf{z}_i \equiv 1 \mod 2, \forall i \in [n] \}\).

  2. 2)

    The shortest characteristic vectors are exactly \(\{\textbf{O}\textbf{z} : \textbf{z}_i=\pm 1, \forall i \in [n] \}\).

Proof

  1. 1)

    Let \(\textbf{O}=(\textbf{v}_1,\ldots ,\textbf{v}_n)\) and \(\textbf{w}=\textbf{B}(\textbf{U}^{-1}\textbf{z})=\textbf{O}\textbf{z}\), where \(\textbf{z}\in \mathbb {Z}^n\) is the vector that \(\forall i\in [n],\, z_i=1\). Note that \(\mathcal {L}=\textbf{O}\cdot \mathbb {Z}^n\). Thus assume \(\textbf{v}=\sum _{i=1}^{n}a_i\textbf{v}_i\), then \(\langle \textbf{w},\textbf{v}\rangle =\sum _{i=1}^{n}a_iz_i\equiv \sum _{i=1}^{n}a^2_i=\langle \textbf{v},\textbf{v}\rangle \text { mod } 2\), where we used \(a^2_i\equiv a_i\text { mod } 2\) and \(z_i\equiv 1 \text { mod } 2\). Thus \(\textbf{w}\in \chi (\mathcal {L})\), so \(\chi (\mathcal {L}) =\{\textbf{O}\textbf{z} : \textbf{z}\in \mathbb {Z}^n \text { such that } \textbf{z}_i \equiv 1 \mod 2, \forall i \in [n] \}\).

  2. 2)

    Note that \(\textbf{O}\) is an orthogonal matrix, thus the shortest characteristic vectors are \(\{\textbf{O}\textbf{z} : \textbf{z}_i=\pm 1, \, \forall \,i \in [n] \}\) by 1).   \(\square \)

Appendix C Proof of Lemma 4.6

Proof

Let \(\mathcal {D}\) be the set of \(n \times n\) diagonal matrices whose diagonal entries are \(\pm 1\). Then \(\mathcal {D}\) forms a subgroup of \(\mathcal {S}^{\pm }_n\), and \(\mathcal {S}^{\pm }_n\) is the semidirect product of \(\mathcal {D}\) and \(\mathcal {S}_n\).Footnote 6 For \(\phi _0 \in {{\text {Aut}}(\mathcal {L})}\) and \(\phi _0 \sim \textbf{T}_{k_1,k_2,l}\), let \(\textbf{O} \in \mathcal {O}_n(\mathbb {R})\) such that \(\mathcal {L} = \textbf{O} \mathbb {Z}^n \), then it has \(\mathfrak {C}_{\phi _0} = \{ \textbf{O} \textbf{T} \textbf{T}_{k_1,k_2,l} \textbf{T} ^{-1} \textbf{O} ^{-1} : \textbf{T} \in \mathcal {S}^{\pm }_n \}\). Denote \(\textbf{y} = \textbf{O} ^{-1} \textbf{x} = (x_1,\cdots ,x_n)\).Footnote 7

For \(k = 1\), it has

$$\begin{aligned} g_1(\textbf{x}) = \mathbb {E}[{\langle \phi \textbf{x},\textbf{x} \rangle }] & = \frac{1}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{T} \in \mathcal {S}^{\pm }_n} {\langle \textbf{O} \textbf{T} \textbf{T}_{k_1,k_2,l} \textbf{T} ^{-1} \textbf{O} ^{-1} \textbf{x},\textbf{x} \rangle } \\ & = \frac{1}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{P} \in \mathcal {S}_n} \sum _{\textbf{D} \in \mathcal {D}} {\langle \textbf{O} \textbf{P} \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{P} ^{-1} \textbf{O} ^{-1} \textbf{x},\textbf{x} \rangle } \\ & = \frac{1}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{P} \in \mathcal {S}_n} \sum _{\textbf{D} \in \mathcal {D}} {\langle \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{P} ^{-1} \textbf{O} ^{-1} \textbf{x}, \textbf{P} ^{-1} \textbf{O} ^{-1}\textbf{x} \rangle } \\ & = \frac{1}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{P} \in \mathcal {S}_n} \sum _{\textbf{D} \in \mathcal {D}} {\langle \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{P} ^{-1} \textbf{y}, \textbf{P} ^{-1} \textbf{y} \rangle }. \end{aligned}$$

Denote \(\textbf{W}_{k_1,k_2,l} = {\text {diag}} \{\textbf{0} _{2l}, -\textbf{I}_{k_1}, \textbf{I}_{k_2}\}\), where \(\textbf{0} _{2l}\) is the \(2l \times 2l\) zero matrix. Then it has \(\sum _{D \in \mathcal {D}} \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} = |\mathcal {D}| \cdot \textbf{W}_{k_1,k_2,l}\), and thus

$$\begin{aligned} g_1(\textbf{x}) & = \frac{|\mathcal {D}|}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{P} \in \mathcal {S}_n} {\langle \textbf{W}_{k_1,k_2,l} \textbf{P} ^{-1} \textbf{y}, \textbf{P} ^{-1} \textbf{y} \rangle } \\ & = \frac{1}{|\mathcal {S}_n|} \sum _{\textbf{P} \in \mathcal {S}_n} (-(x_{\textbf{P} (2l+1)}^2+ \cdots + x_{\textbf{P} (2l+k_1)}^2) + (x_{\textbf{P} (2l+k_1 +1)}^2 + \cdots + x_{\textbf{P} (n)}^2)) \\ & = \frac{-k_1 + k_2}{n} (x_1^2 + \cdots + x_n^2) = \frac{k_2-k_1}{n} \left\| \textbf{x} \right\| ^2, \end{aligned}$$

where \(\textbf{P} (i)\) represents the row number of the ‘1’ in \(\textbf{P} \)’s i-th column.

For \(k = 2\), it has

$$\begin{aligned} g_2(\textbf{x}) & = \frac{1}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{T} \in \mathcal {S}^{\pm }_n} {\langle \textbf{O} \textbf{T} \textbf{T}_{k_1,k_2,l} \textbf{T} ^{-1} \textbf{O} ^{-1} \textbf{x},\textbf{x} \rangle }^2 \\ & = \frac{1}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{P} \in \mathcal {S}_n} \sum _{\textbf{D} \in \mathcal {D}} {\langle \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{P} ^{-1} \textbf{O} ^{-1} \textbf{x}, \textbf{P} ^{-1} \textbf{O} ^{-1}\textbf{x} \rangle }^2 \\ & = \frac{1}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{P} \in \mathcal {S}_n} \sum _{\textbf{D} \in \mathcal {D}} {\langle \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{P} ^{-1} \textbf{y}, \textbf{P} ^{-1} \textbf{y} \rangle }^2. \end{aligned}$$

For fixed \(\textbf{P} \in \mathcal {S}_n\) and \(\textbf{D} \in \mathcal {D}\), denote \(\textbf{z} = \textbf{P} ^{-1}y = (z_1,\cdots , z_n)\) and \(\textbf{D} = \textbf{D} ^{-1} = {\text {diag}} \{d_1,\cdots ,d_n\}\), where \(d_i = \pm 1\). Then it has

$$\begin{aligned} \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{z} = (d_1 d_2 z_2, d_1 d_2 z_1, & \dots , d_{2l -1} d_{2l} z_{2l}, d_{2l-1} d_{2l} z_{2l-1}, \\ & -z_{2l+1}, \dots , -z_{2l+k_1}, z_{2l+k_1+1},\dots , z_n), \end{aligned}$$

and \({\langle \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{z}, \textbf{z} \rangle } =\sum _{i=1}^l 2d_{2i-1}d_{2i}z_{2i-1}z_{2i} - \sum _{i=2l+1}^{2l+k_1}z_i^2 + \sum _{i=2l+k_1+1}^n z_i^2\). It follows that

$$\begin{aligned} \sum _{\textbf{D} \in \mathcal {D}} {\langle \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{z}, \textbf{z} \rangle }^2 & = |\mathcal {D}| \left( 4 \sum _{i=1}^l z_{2i-1}^2 z_{2i}^2 + \sum _{i=2l+1}^{n}z_i^4 + \sum _{2l+1\le i, j \le 2l+k_1}z_i^2 z_j^2 \right. \\ & \left. - 2 \sum _{\begin{array}{c} 2l+1\le i \le 2l+k_1 \\ 2l+k_1+1 \le j \le n \end{array}}z_i^2 z_j^2 + \sum _{2l+k_1+1\le i, j \le n}z_i^2 z_j^2 \right) . \end{aligned}$$

Observe that \(z_i = x_{\textbf{P} (i)}\) for \(1 \le i \le n\), then it can be deduced that

$$\begin{aligned} g_2(\textbf{x}) & = \frac{1}{|\mathcal {S}^{\pm }_n|} \sum _{\textbf{P} \in \mathcal {S}_n} \sum _{\textbf{D} \in \mathcal {D}} {\langle \textbf{D} \textbf{T}_{k_1,k_2,l} \textbf{D} ^{-1} \textbf{z}, \textbf{z} \rangle }^2 \\ & = \frac{4l + k_1(k_1 - 1) - 2 k_1 k_2 + k_2(k_2 - 1)}{n(n-1)}\sum _{1 \le i,j \le n} x_i^2 x_j^2 + \frac{(n - 2l)}{n} \sum _{1 \le i \le n} x_i^4 \\ & = \frac{6l+(k_1-k_2)^2-n}{n(n-1)}\sum _{1 \le i,j \le n} x_i^2 x_j^2 + \frac{(n - 2l)}{n} \sum _{1 \le i \le n} x_i^4 \\ & = \frac{n^2-2nl-(k_1-k_2)^2-4l}{n(n-1)}\sum _{i=1}^{n} {x_i}^4 + \frac{6l+(k_1-k_2)^2-n}{n(n-1)}(\sum _{i=1}^{n}{x_i}^2)^2. \end{aligned}$$

   \(\square \)

Appendix D Recover the Exact Shortest Vectors in Proposition 4.2

In this appendix, we demonstrate how to recover the exact shortest vectors by using good enough approximations of the shortest vectors of \(\mathcal {L}\) and automorphisms of \({{\text {Aut}}(\mathcal {L})}\), thereby completing Proposition 4.2. In fact, this can be reduced to the following problem.

Problem D.1

Suppose n is odd. Given a basis \(\textbf{B}\) of a lattice \(\mathcal {L} \cong \mathbb {Z}^n\), a polynomial number of automorphisms \(\phi _1,\phi _2,\ldots ,\phi _{p(n)} \in {{\text {Aut}}(\mathcal {L})}\) that are drawn uniformly and independently from a conjugacy class \(\mathfrak {C}_{\phi _0}\), where \(\phi _0 \sim \textbf{T}_{k_1,k_2,l}\) and \(k_1,k_2,l\) are fixed, and an approximation of a set of independent shortest vectors \(\textbf{v}_i\), i.e., \(\{\tilde{\textbf{v}}_1,\ldots ,\tilde{\textbf{v}}_n\}\) such that \(\tilde{\textbf{v}}_i=\textbf{v}_i+\boldsymbol{\epsilon }_i\) and \(\left\| \boldsymbol{\epsilon }_i\right\| \le n^{-c}\). The goal is to find the shortest vectors of \(\mathcal {L}\), i.e., \(\textbf{V}=\{{\textbf{v}}_1,\ldots ,{\textbf{v}}_n\}\).

Note that for any \(\phi \in \mathfrak {C}_{\phi _0}\), it has \(\phi =\textbf{V}\textbf{S}\textbf{V}^{-1}\), where \(\textbf{S} \in {\mathcal {S}^{\pm }_n}\) and \(\textbf{S} \sim \textbf{T}_{k_1,k_2,l}\) (i.e., \(\exists \textbf{T} \in {\mathcal {S}^{\pm }_n}\) such that \(\textbf{S} = \textbf{T}\textbf{T}_{k_1,k_2,l}\textbf{T}^{-1}\)), and \(\phi \) acts on the set of shortest vectors \(\{\pm \textbf{v} _1, \dots , \pm \textbf{v} _n\}\). Then for \(1 \le i,j \le n\), it has \(\left\| \phi \textbf{v}_i \pm \textbf{v}_j\right\| = 0\) or 2 and

$$\begin{aligned} \left| \left\| \phi \tilde{\textbf{v}}_i \pm \tilde{\textbf{v}}_j\right\| - \left\| \phi \textbf{v}_i \pm \textbf{v}_j\right\| \right| \le \left\| \phi \boldsymbol{\epsilon }_i \pm \boldsymbol{\epsilon }_j\right\| \le 2n^{-c}. \end{aligned}$$
(14)

Thus, for any given \(\phi \in \mathfrak {C}_{\phi _0}\), we can decide whether \(\left\| \phi \textbf{v}_i \pm \textbf{v}_j\right\| = 0\), and thus exactly recover the corresponding matrix \(\textbf{S} \in {\mathcal {S}^{\pm }_n}\).

Next, we demonstrate that, for the given automorphisms \(\phi _1,\phi _2,\ldots ,\phi _{p(n)} \in \mathfrak {C}_{\phi _0}\) and the corresponding matrices \(\textbf{S}_i \in {\mathcal {S}^{\pm }_n}, 1 \le i \le p(n)\), such that \(\phi _i=\textbf{V}\textbf{S}_i\textbf{V}^{-1}\), we can efficiently recover \(\textbf{V}\). For \(\phi , \textbf{S} \in \mathbb {R}^{n \times n}\), define \(K{(\phi ,{\textbf {S}})}:=\{{\textbf {X}} \in \mathbb {R}^{n \times n}:{\textbf {XS}}{} {\textbf {X}}^{-1}=\phi \}\). Then clearly, \(K{(\phi ,{\textbf {S}})}\) is an \(\mathbb {R}\)-linear space, and \(\textbf{V} \in K{(\phi _i,{\textbf {S}}_i)}\). Moreover,

$$\begin{aligned} K{(\phi _i,{\textbf {S}}_i)} &=\{{\textbf {X}}:{\textbf {XS}}_i{\textbf {X}}^{-1}={\textbf {VS}}_i\textbf{V}^{-1}\}\\ &=\{{\textbf {X}}:({\textbf {V}}^{-1}{} {\textbf {X}}){\textbf {S}}_i({\textbf {V}}^{-1}{} {\textbf {X}})^{-1}={\textbf {S}}_i\}\\ &=\{{\textbf {VX}}:{\textbf {X}}{} {\textbf {S}}_i{\textbf {X}}^{-1}={\textbf {S}}_i\}\\ &={\textbf {V}}\cdot \{{\textbf {X}}:{\textbf {X}}{} {\textbf {S}}_i{\textbf {X}}^{-1}={\textbf {S}}_i\}\\ &= {\textbf {V}}\cdot K{({\textbf {S}}_i,{\textbf {S}}_i)}. \end{aligned}$$

Therefore, \(\textbf{V} \in {\textbf {V}}\cdot \bigcap _{i=1}^{p(n)} K{({\textbf {S}}_i,{\textbf {S}}_i)}\). Note that \(K{({\textbf {S}}_i,{\textbf {S}}_i)}\) is a subgroup of \(\mathcal {S}^{\pm }_n\). Let \(\textbf{T}_i \in {\mathcal {S}^{\pm }_n}\) such that \(\textbf{S}_i = \textbf{T}_i\textbf{T}_{k_1,k_2,l}\textbf{T}_i^{-1}\). Then it has

$$\begin{aligned} K{({\textbf {S}}_i,{\textbf {S}}_i)} & = \{{\textbf {X}} : {\textbf {X}}{} {\textbf {S}}_i{\textbf {X}}^{-1}={\textbf {S}}_i \} \\ & = \{ {\textbf {X}} :{\textbf {X}}\textbf{T}_i\textbf{T}_{k_1,k_2,l}\textbf{T}_i^{-1}{} {\textbf {X}}^{-1}=\textbf{T}_i\textbf{T}_{k_1,k_2,l}\textbf{T}_i^{-1} \} \\ & = \{ {\textbf {X}} : (\textbf{T}_i^{-1}{} {\textbf {X}}\textbf{T}_i) \textbf{T}_{k_1,k_2,l} (\textbf{T}_i^{-1}{} {\textbf {X}}\textbf{T}_i)^{-1} = \textbf{T}_{k_1,k_2,l} \} \\ & = \textbf{T}_i K{(\textbf{T}_{k_1,k_2,l},\textbf{T}_{k_1,k_2,l})} \textbf{T}_i^{-1}. \end{aligned}$$

Since \(\phi _i\) is drawn uniformly from the conjugacy class \(\mathfrak {C}_{\phi _0}\), then \(\textbf{S}_i\) is distributed uniformly in the conjugacy class \(\mathfrak {C}_{\textbf{T}_{k_1,k_2,l}}\). Then from the group action perspective, the coset \(\textbf{T}_i K{(\textbf{T}_{k_1,k_2,l},\textbf{T}_{k_1,k_2,l})}\) is distributed uniformly in the left cosets of \(\textbf{T}_{k_1,k_2,l}\) in \(\mathcal {S}^{\pm }_n\). Equivalently, \(K{({\textbf {S}}_i,{\textbf {S}}_i)} = \textbf{T}_i K{(\textbf{T}_{k_1,k_2,l},\textbf{T}_{k_1,k_2,l})} \textbf{T}_i^{-1}\) can be viewed as a random subgroup of \(\mathcal {S}^{\pm }_n\) such that \(\textbf{T}_i\) is drawn uniformly at random from \(\mathcal {S}^{\pm }_n\). There are two cases for \(\textbf{T}_{k_1,k_2,l}\).

Case 1. \(l = 0\). In this case, it has \(k_1,k_2 > 0\), and thus there exists \(1 \le a \ne b \le n\) such that \(\textbf{T}_{k_1,k_2,l} \textbf{e} _a = \textbf{e} _a\) and \(\textbf{T}_{k_1,k_2,l} \textbf{e} _b = -\textbf{e} _b\) (we recall that \(\{\textbf{e} _a\}_{a \in [n]}\) is the standard basis). Thus, for an \(\textbf{X} \in K{(\textbf{T}_{k_1,k_2,l},\textbf{T}_{k_1,k_2,l})}\), we have \(\textbf{e} _a^\top \textbf{X} \textbf{e} _b = - \textbf{e} _a^\top \textbf{X} \textbf{T}_{k_1,k_2,l} \textbf{e} _b = - \textbf{e} _a^\top \textbf{T}_{k_1,k_2,l} \textbf{X} \textbf{e} _b = - \textbf{e} _a^\top \textbf{X} \textbf{e} _b \), i.e., \(\textbf{e} _a^\top \textbf{X} \textbf{e} _b = 0\). Similarly, it can be deduced that \(\textbf{e} _b^\top \textbf{X} \textbf{e} _a = 0\).

Therefore, for any \(\textbf{Y} \in K{({\textbf {S}}_i,{\textbf {S}}_i)}\), we have \(\textbf{T}_i^\top \textbf{Y} \textbf{T}_i \in K{(\textbf{T}_{k_1,k_2,l},\textbf{T}_{k_1,k_2,l})}\). It follows that \((\textbf{T}_i \textbf{e} _a)^\top \textbf{Y} (\textbf{T}_i \textbf{e} _b) = (\textbf{T}_i \textbf{e} _b)^\top \textbf{Y} (\textbf{T}_i \textbf{e} _a) = 0\). Note that \(\textbf{T}_i\) can be viewed as drawn uniformly at random from \(\mathcal {S}^{\pm }_n\), and \(\mathcal {S}^{\pm }_n\) acts transitively on all the pairs \(\{(\pm \textbf{e} _a, \pm \textbf{e} _b): 1 \le a \ne b \le n\}\). Thus, for a sufficiently large polynomial p(n), it has \(\textbf{e} _a^\top \textbf{Y} \textbf{e} _b = \textbf{e} _b^\top \textbf{Y} \textbf{e} _a = 0\) for all \(1 \le a \ne b \le n\) and \(\textbf{Y} \in \bigcap _{i=1}^{p(n)} K{({\textbf {S}}_i,{\textbf {S}}_i)}\). In other words, \(\bigcap _{i=1}^{p(n)} K{({\textbf {S}}_i,{\textbf {S}}_i)}\) consists of all diagonal matrices in \(\mathbb {R}^{n \times n}\), i.e., \(\bigcap _{i=1}^{p(n)} K{(\phi _i,{\textbf {S}}_i)} = \{ \textbf{V} \cdot {\text {diag}}\{d_1, \dots , d_n\} : d_i \in \mathbb {R} \}\). Then \(\textbf{V}\) can be reconstructed by first computing an \(\mathbb {R}\)-linear basis of the space \(\bigcap _{i=1}^{p(n)} K{(\phi _i,{\textbf {S}}_i)}\) and then recovering each \(\pm \textbf{v} _i\) via vector normalization.

Case 2: \(l \ne 0\). In this case, it has \(k_1 \ne 0\) (or \(k_2 \ne 0\)). Thus we have \(\textbf{T}_{k_1,k_2,l} \textbf{e} _1 = \textbf{e} _2\), \(\textbf{T}_{k_1,k_2,l} \textbf{e} _2 = \textbf{e} _1\), and there exists \(3 \le j \le n\) such that \(\textbf{T}_{k_1,k_2,l} \textbf{e} _j = -\textbf{e} _j\) (or \(\textbf{T}_{k_1,k_2,l} \textbf{e} _j = \textbf{e} _j\) if \(k_2 \ne 0\)). Then, by a similar deduction as in Case 1, we have \(\textbf{e} _1^\top \textbf{X} \textbf{e} _1 = \textbf{e} _2^\top \textbf{X} \textbf{e} _2\), \(\textbf{e} _1^\top \textbf{X} \textbf{e} _2 = \textbf{e} _2^\top \textbf{X} \textbf{e} _1\), and \(\textbf{e} _1^\top \textbf{X} \textbf{e} _j = -\textbf{e} _2^\top \textbf{X} \textbf{e} _j\) (or \(\textbf{e} _1^\top \textbf{X} \textbf{e} _j = \textbf{e} _2^\top \textbf{X} \textbf{e} _j\) if \(k_2 \ne 0\)) for all \(j \in [n]\) and \(\textbf{X} \in K{(\textbf{T}_{k_1,k_2,l},\textbf{T}_{k_1,k_2,l})}\).

Again, due to the transitivity of the action of \(\mathcal {S}^{\pm }_n\) on \(\{(\pm \textbf{e} _a, \pm \textbf{e} _b, \pm \textbf{e} _c)\}\), we can deduce that for a large enough polynomial p(n), it has \(\textbf{e} _a^\top \textbf{Y} \textbf{e} _a = \textbf{e} _b^\top \textbf{Y} \textbf{e} _b\), \(\textbf{e} _a^\top \textbf{Y} \textbf{e} _b = \textbf{e} _b^\top \textbf{Y} \textbf{e} _a\), and \(\textbf{e} _a^\top \textbf{Y} \textbf{e} _c = -\textbf{e} _b^\top \textbf{Y} \textbf{e} _c\), \(\textbf{e} _a^\top \textbf{Y} \textbf{e} _c = \textbf{e} _b^\top \textbf{Y} \textbf{e} _c\) for all \(1 \le a \ne b \ne c \le n\) and \(\textbf{Y} \in \bigcap _{i=1}^{p(n)} K{({\textbf {S}}_i,{\textbf {S}}_i)}\). In other words, \(\bigcap _{i=1}^{p(n)} K{({\textbf {S}}_i,{\textbf {S}}_i)} = \{h\textbf{I}_n: h\in \mathbb {R}\}\). Then \(\textbf{V}\) can be reconstructed by first computing a nonzero matrix in \(\bigcap _{i=1}^{p(n)} K{(\phi _i,{\textbf {S}}_i)}\) and then performing normalization.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, K., Wang, A., Luo, H., Liu, G., Yu, Y., Wang, X. (2023). Exploiting the Symmetry of \(\mathbb {Z}^n\): Randomization and the Automorphism Problem. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14441. Springer, Singapore. https://doi.org/10.1007/978-981-99-8730-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8730-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8729-0

  • Online ISBN: 978-981-99-8730-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics