Skip to main content

Efficient Updatable Public-Key Encryption from Lattices

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

Updatable public key encryption has recently been introduced as a solution to achieve forward-security in the context of secure group messaging without hurting efficiency, but so far, no efficient lattice-based instantiation of this primitive is known.

In this work, we construct the first LWE-based UPKE scheme with polynomial modulus-to-noise rate, which is CPA-secure in the standard model. At the core of our security analysis is a generalized reduction from the standard LWE problem to (a stronger version of) the Extended LWE problem. We further extend our construction to achieve stronger security notions by proposing two generic transforms. Our first transform allows to obtain CCA security in the random oracle model and adapts the Fujisaki-Okamoto transform to the UPKE setting. Our second transform allows to achieve security against malicious updates by adding a NIZK argument in the update mechanism. In the process, we also introduce the notion of Updatable Key Encapsulation Mechanism (UKEM), as the updatable variant of KEMs. Overall, we obtain a CCA-secure UKEM in the random oracle model whose ciphertext sizes are of the same order of magnitude as that of CRYSTALS-Kyber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abou Haidar, C., Libert, B., Passelègue, A.: Updatable public key encryption from DCR: efficient constructions with stronger security. In: CCS (2022)

    Google Scholar 

  2. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Sampling discrete gaussians efficiently and obliviously. In: ASIACRYPT (2013)

    Google Scholar 

  3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. ePrint 2015/046 (2015)

    Google Scholar 

  4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improvements for the IETF MLS standard for group messaging. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_9

    Chapter  Google Scholar 

  5. Anderson, R.: Two remarks on public-key cryptology. In: CCS (1997). invited talk

    Google Scholar 

  6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35

    Chapter  Google Scholar 

  7. Asano, K., Watanabe, Y.: Updatable public key encryption with strong CCA security: Security analysis and efficient generic construction. Cryptology ePrint Archive 2023/976 (2023)

    Google Scholar 

  8. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33

    Chapter  Google Scholar 

  9. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_28

    Chapter  Google Scholar 

  10. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_1

    Chapter  Google Scholar 

  11. Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: EuroS &P (2018)

    Google Scholar 

  12. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Entropic hardness of module-LWE from module-NTRU. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT 2022. LNCS, vol. 13774. Springer, Cham (2022)

    Google Scholar 

  13. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with untrusted update. In: CCS (2006)

    Google Scholar 

  14. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS (2012)

    Google Scholar 

  15. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehle, D.: Classical hardness of learning with errors. In: STOC (2013)

    Google Scholar 

  16. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8

    Chapter  Google Scholar 

  17. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

    Chapter  Google Scholar 

  18. Cheon, J.H., Kim, D., Kim, D., Lee, J., Shin, J., Song, Y.: Lattice-based secure biometric authentication for hamming distance. In: Baek, J., Ruj, S. (eds.) ACISP 2021. LNCS, vol. 13083, pp. 653–672. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90567-5_33

    Chapter  Google Scholar 

  19. Cronin, E., Jamin, S., Malkin, T., McDaniel, P.: On the performance, feasibility, and use of forward-secure signatures. In: CCS (2003)

    Google Scholar 

  20. Dadush, D., Regev, O., Stephens-Davidowitz, N.: On the closest vector problem with a distance guarantee. In: CCC (2014)

    Google Scholar 

  21. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_35

    Chapter  Google Scholar 

  22. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 254–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_9

    Chapter  Google Scholar 

  23. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.: Faster lattice-based KEMs via a generic Fujisaki-Okamoto transform using prefix hashing. In: CCS (2021)

    Google Scholar 

  24. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

    Chapter  Google Scholar 

  25. Gentry, C., Peikert, C., Vaikunthanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008)

    Google Scholar 

  26. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: ASIACRYPT (2002)

    Google Scholar 

  27. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  Google Scholar 

  28. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_31

    Chapter  Google Scholar 

  29. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_20

    Chapter  Google Scholar 

  30. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guarantees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_6

    Chapter  Google Scholar 

  31. Kim, D., Lee, D., Seo, J., Song, Y.: Toward practical lattice-based proof of knowledge from Hint-MLWE. In: CRYPTO (2023)

    Google Scholar 

  32. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4

    Article  MathSciNet  Google Scholar 

  33. Lyubashevsky, V., Nguyen, N.K., Planç on, M.: Lattice-based zero-knowledge proofs and applications: shorter, simpler, and more general. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_3

    Chapter  Google Scholar 

  34. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_23

    Chapter  Google Scholar 

  35. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_27

    Chapter  Google Scholar 

  36. Mera, J.M.B., Karmakar, A., Marc, T., Soleimanian, A.: Efficient lattice-based inner-product functional encryption. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13178. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_6

    Chapter  Google Scholar 

  37. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_1

    Chapter  Google Scholar 

  38. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC (1990)

    Google Scholar 

  39. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Michael Rosenberg for pointing out a flaw in a prior version of this work. The first author is funded by the Direction Générale de l’Armement (Pôle de Recherche CYBER). This work was supported by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute and the France 2030 ANR Project ANR-22-PETQ-0008 PQ-TLS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calvin Abou Haidar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abou Haidar, C., Passelègue, A., Stehlé, D. (2023). Efficient Updatable Public-Key Encryption from Lattices. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14442. Springer, Singapore. https://doi.org/10.1007/978-981-99-8733-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8733-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8732-0

  • Online ISBN: 978-981-99-8733-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics