Abstract
Updatable public key encryption has recently been introduced as a solution to achieve forward-security in the context of secure group messaging without hurting efficiency, but so far, no efficient lattice-based instantiation of this primitive is known.
In this work, we construct the first LWE-based UPKE scheme with polynomial modulus-to-noise rate, which is CPA-secure in the standard model. At the core of our security analysis is a generalized reduction from the standard LWE problem to (a stronger version of) the Extended LWE problem. We further extend our construction to achieve stronger security notions by proposing two generic transforms. Our first transform allows to obtain CCA security in the random oracle model and adapts the Fujisaki-Okamoto transform to the UPKE setting. Our second transform allows to achieve security against malicious updates by adding a NIZK argument in the update mechanism. In the process, we also introduce the notion of Updatable Key Encapsulation Mechanism (UKEM), as the updatable variant of KEMs. Overall, we obtain a CCA-secure UKEM in the random oracle model whose ciphertext sizes are of the same order of magnitude as that of CRYSTALS-Kyber.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abou Haidar, C., Libert, B., Passelègue, A.: Updatable public key encryption from DCR: efficient constructions with stronger security. In: CCS (2022)
Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Sampling discrete gaussians efficiently and obliviously. In: ASIACRYPT (2013)
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. ePrint 2015/046 (2015)
Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improvements for the IETF MLS standard for group messaging. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_9
Anderson, R.: Two remarks on public-key cryptology. In: CCS (1997). invited talk
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35
Asano, K., Watanabe, Y.: Updatable public key encryption with strong CCA security: Security analysis and efficient generic construction. Cryptology ePrint Archive 2023/976 (2023)
Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33
Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_28
Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_1
Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: EuroS &P (2018)
Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Entropic hardness of module-LWE from module-NTRU. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT 2022. LNCS, vol. 13774. Springer, Cham (2022)
Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with untrusted update. In: CCS (2006)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS (2012)
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehle, D.: Classical hardness of learning with errors. In: STOC (2013)
Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8
Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16
Cheon, J.H., Kim, D., Kim, D., Lee, J., Shin, J., Song, Y.: Lattice-based secure biometric authentication for hamming distance. In: Baek, J., Ruj, S. (eds.) ACISP 2021. LNCS, vol. 13083, pp. 653–672. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90567-5_33
Cronin, E., Jamin, S., Malkin, T., McDaniel, P.: On the performance, feasibility, and use of forward-secure signatures. In: CCS (2003)
Dadush, D., Regev, O., Stephens-Davidowitz, N.: On the closest vector problem with a distance guarantee. In: CCC (2014)
Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_35
Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 254–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_9
Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.: Faster lattice-based KEMs via a generic Fujisaki-Okamoto transform using prefix hashing. In: CCS (2021)
Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225
Gentry, C., Peikert, C., Vaikunthanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008)
Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: ASIACRYPT (2002)
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_31
Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_20
Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guarantees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_6
Kim, D., Lee, D., Seo, J., Song, Y.: Toward practical lattice-based proof of knowledge from Hint-MLWE. In: CRYPTO (2023)
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4
Lyubashevsky, V., Nguyen, N.K., Planç on, M.: Lattice-based zero-knowledge proofs and applications: shorter, simpler, and more general. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_3
Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_23
Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_27
Mera, J.M.B., Karmakar, A., Marc, T., Soleimanian, A.: Efficient lattice-based inner-product functional encryption. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13178. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_6
Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_1
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC (1990)
O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30
Acknowledgments
We thank Michael Rosenberg for pointing out a flaw in a prior version of this work. The first author is funded by the Direction Générale de l’Armement (Pôle de Recherche CYBER). This work was supported by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute and the France 2030 ANR Project ANR-22-PETQ-0008 PQ-TLS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Abou Haidar, C., Passelègue, A., Stehlé, D. (2023). Efficient Updatable Public-Key Encryption from Lattices. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14442. Springer, Singapore. https://doi.org/10.1007/978-981-99-8733-7_11
Download citation
DOI: https://doi.org/10.1007/978-981-99-8733-7_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8732-0
Online ISBN: 978-981-99-8733-7
eBook Packages: Computer ScienceComputer Science (R0)