Abstract
Joint computation on encrypted data is becoming increasingly crucial with the rise of cloud computing. In recent years, the development of multi-client functional encryption (MCFE) has made it possible to perform joint computation on private inputs, without any interaction. Well-settled solutions for linear functions have become efficient and secure, but there is still a shortcoming: if one user inputs incorrect data, the output of the function might become meaningless for all other users (while still useful for the malicious user). To address this issue, the concept of verifiable functional encryption was introduced by Badrinarayanan et al. at Asiacrypt ’16 (BGJS). However, their solution was impractical because of strong statistical requirements. More recently, Bell et al. introduced a related concept for secure aggregation, with their ACORN solution, but it requires multiple rounds of interactions between users. In this paper,
-
we first propose a computational definition of verifiability for MCFE. Our notion covers the computational version of BGJS and extends it to handle any valid inputs defined by predicates. The BGJS notion corresponds to the particular case of a fixed predicate in our setting;
-
we then introduce a new technique called Combine-then-Descend, which relies on the class group. It allows us to construct One-time Decentralized Sum (\(\textsf{ODSUM}\)) on verifiable private inputs. \(\textsf{ODSUM}\) is the building block for our final protocol of a verifiable decentralized MCFE for inner-product, where the inputs are within a range. Our approach notably enables the efficient identification of malicious users, thereby addressing an unsolved problem in ACORN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This step can be done in a decentralized manner, with up to \(n_\textsf{SetUp}-1\) malicious parties out of \(n_\textsf{SetUp} \) as in the interactive setup for the \(\textsf{CL}\) scheme in [11].
References
Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_19
Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_5
Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_22
Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12
Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 557–587. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_19
Bell, J., Gascón, A., Lepoint, T., Li, B., Meiklejohn, S., Raykova, M., Yun, C.: ACORN: input validation for secure aggregation. Cryptology ePrint Archive, Report 2022/1461 (2022). https://eprint.iacr.org/2022/1461
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May 1988. https://doi.org/10.1145/62212.62222
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018. https://doi.org/10.1109/SP.2018.00020
Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_7
Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-efficient threshold EC-DSA. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 266–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_10
Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from \(\sf DDH\). In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_26
Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 733–764. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_25
Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_24
Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic decentralized functional encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 747–775. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_25
Couteau, G., Goudarzi, D., Klooß, M., Reichle, M.: Sharp: Short relaxed range proofs. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 609–622. ACM Press, November 2022. https://doi.org/10.1145/3548606.3560628
Couteau, G., Klooß, M., Lin, H., Reichle, M.: Efficient range proofs with transparent setup from bounded integer commitments. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 247–277. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_9
Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: 31st FOCS. pp. 308–317. IEEE Computer Society Press, October 1990. https://doi.org/10.1109/FSCS.1990.89549
Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature schemes based on groups of unknown order. J. Cryptol. 19(4), 463–487 (2006). https://doi.org/10.1007/s00145-006-0224-0
Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32
Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional encryption. Cryptology ePrint Archive, Report 2013/774 (2013). https://eprint.iacr.org/2013/774
Libert, B., Ţiţiu, R.: Multi-client functional encryption for linear functions in the standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 520–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_18
Nguyen, D.D., Phan, D.H., Pointcheval, D.: Verifiable decentralized multi-client functional encryption for inner product. Cryptology ePrint Archive, Paper 2023/268 (2023). https://eprint.iacr.org/2023/268, https://eprint.iacr.org/2023/268
Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33
Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113
Acknowledgements
This work was supported in part by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute and by Beyond5G, a project funded by the French government as part of the plan “France Relance”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Nguyen, D.D., Phan, D.H., Pointcheval, D. (2023). Verifiable Decentralized Multi-client Functional Encryption for Inner Product. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14442. Springer, Singapore. https://doi.org/10.1007/978-981-99-8733-7_2
Download citation
DOI: https://doi.org/10.1007/978-981-99-8733-7_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8732-0
Online ISBN: 978-981-99-8733-7
eBook Packages: Computer ScienceComputer Science (R0)