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Abstract. Joint computation on encrypted data is becoming increasingly crucial with the
rise of cloud computing. In recent years, the development of multi-client functional encryption
(MCFE) has made it possible to perform joint computation on private inputs, without any
interaction. Well-settled solutions for linear functions have become efficient and secure, but
there is still a shortcoming: if one user inputs incorrect data, the output of the function might
become meaningless for all other users (while still useful for the malicious user). To address this
issue, the concept of verifiable functional encryption was introduced by Badrinarayanan et al.
at Asiacrypt ’16 (BGJS). However, their solution was impractical because of strong statistical
requirements. More recently, Bell et al. introduced a related concept for secure aggregation,
with their ACORN solution, but it requires multiple rounds of interactions between users. In
this paper,
– we first propose a computational definition of verifiability for MCFE. Our notion covers

the computational version of BGJS and extends it to handle any valid inputs defined by
predicates. The BGJS notion corresponds to the particular case of a fixed predicate in our
setting;

– we then introduce a new technique called Combine-then-Descend, which relies on the class
group. It allows us to construct One-time Decentralized Sum (ODSUM) on verifiable pri-
vate inputs. ODSUM is the building block for our final protocol of a verifiable decentralized
MCFE for inner-product, where the inputs are within a range. Our approach notably en-
ables the efficient identification of malicious users, thereby addressing an unsolved problem
in ACORN.

Keywords: Verifiability · Decentralized · Functional Encryption · Inner Product

1 Introduction

Multi-Client Functional Encryption. Functional Encryption (FE) [BSW11] is a paradigm de-
signed to overcome the all-or-nothing limitation of traditional encryption, allowing the sender to
control access to their encrypted data in a more fine-grained manner through functional decryption
keys. This paradigm enables the preservation of user’s privacy in cloud computing services, where
clouds can learn nothing beyond the delegated function evaluated on user’s private data. FE with a
single user appears to be quite restrictive in practice, as the number of useful functions may be small.
In this case, the Public Key Encryption (PKE) can be transformed into FE by encrypting the eval-
uations of various functions using specific keys. However, this approach is not feasible for multi-user
settings, even if a fixed function only is considered. To address this, Multi-Input Functional Encryption
(MIFE) and Multi-Client Functional Encryption (MCFE) were thus introduced [GGG+14,GKL+13],
allowing multiple clients to encrypt their individual data independently and contribute encrypted
inputs to a joint function, with the help of possibly a trusted authority who runs the setup procedure
and generates functional decryption keys. Among the classes of functions for MIFE/MCFE, the inner
product is an expressive class that allows computing weighted averages and sums over encrypted data,
making it especially useful for statistical analysis.

Chotard et al. [CDG+18] first introduced the notion of decentralized MCFE (DMCFE) in which
there is no requirement for a trusted authority, and each client can have a complete control over
their encrypted individual data and over the generation of functional decryption keys. The authors
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also provided a DMCFE scheme for inner product that is secure in random oracle model and in
which all clients only need to run an MPC protocol once during the setup. As follow-up works, new
constructions of DMCFE for inner product that improve the security model such as by allowing
incomplete ciphertext queries [ABKW19], by removing the random oracle [ABG19, LT19], or by
allowing dynamic join of new users [CDSG+20] have been introduced. In particular, the MPC protocol
in [CDG+18] was removed by a decentralized sum protocol in [CDSG+20], making the DMCFE for
inner product completely non-interactive and eliminating the need for pairings in the groups. In this
paper, we focus on the decentralized MCFE.

Importance of Verifiability in MCFE. Historically, the security of an encryption scheme has
focused on the confidentiality of the message being encrypted. The (multi-client) functional encryption
is not an exception, with its indistinguishability security ensuring that given two encrypted values and
decryption keys for functions that evaluate the same at these two values, then it is computationally
hard to distinguish between the ciphertexts of these two values. However, Badrinarayanan et al.
[BGJS16] showed that the security of computation for an honest-but-curious receiver is necessary:
a malicious sender could provide a false ciphertext and false functional decryption keys, so that the
value encrypted within the ciphertext can vary when computed with these different functions through
an honest decryption process. An analogous notion for the receiver in the multi-input setting is also
provided.

In this work, we address a practical concern when using (decentralized) multi-client FE for inner
product in real-world applications. The DMCFE for inner-product protocol can be run by thou-
sands of senders, but they may not be all honest. If we assume that a small percentage of them are
malicious, trying to bias the function evaluations by sending random data, or even fake data, and
contributing dishonest functional key shares. To minimize the impact of these malicious clients, we
propose a verification scheme for ciphertexts and one for functional decryption key shares, so that
once all are valid, the decryption result is guaranteed to not be significantly biased. Furthermore, our
concrete DMCFE scheme allows practically-efficient identification of malicious senders. Beyond the
inner products, we define a verifiable DMCFE, which consequently provides input validation for the
receiver as in [BGL+22]. Compared to their scheme, our verifiable MCFE scheme works on a larger
class of functions than the sum, and does not require interaction between senders and receiver during
the verification process.

Verifiable DMCFE for Inner Product. Verifiability for DMCFE in the general case is very
difficult, because a small modification of the input can cause a significant difference in the output
(e.g. inverse functions). We can formalize the validity condition as a predicate, depending on each
application. However, for linear functions with small coefficients and small inputs (which are the most
useful in practice, like average functions for example), a change in the input does not result in a major
change in the output, unless there is a significant modification to an input. When the number of users
is large enough, the inputs are bounded (which are often considered in Inner-Product Functional
Encryption) then if an input is changed but still remains within a reasonable range, the output
function will be quite close to the exact value. Additionally, most of the IP-DMCFE schemes need
a final discrete logarithm computation to get the result, which requires it to be small enough, and
so the inputs should also be in a reasonable range. For these reasons, we target DMCFE for inner
product, and verifiability checks that the inputs stay within a specific range. Such a range verification
will be our predicate in the general framework (for both the encrypted inputs and the functions in
the keys).

A Real-Life Example. We consider Aggregating Household Energy Consumption as a practical
motivation. For optimization purpose, an energy supplier may want to aggregate the units of energy
(kilowatt-hours or kWh) consumed by its customers during some specific periods of the day. However,
the energy consumption of each customer is a private information, as it may include, for example,
the time they get up in the morning, leave their house, return home and which electronic devices
they use. Still, they may be willing to help the supplier with their data to improve its service. To
protect user’s privacy, the customers are recommended to use a decentralized multi-client functional
encryption to send their data in an encrypted form. However, nothing guarantees that the electricity
supplier receives a correct aggregate of the metered energy consumption or at least an approximation
of this value. In fact, some customers may provide malformed ciphertexts and malformed functional
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key shares to bias the joint-input function. Therefore, if we can enforce each client to correctly encrypt
a value in some valid range and to generate a correct functional key share, the noise from the input
made by a small number of malicious clients can be mitigated when the aggregate value is computed
among a large number of clients.

The fact that this scenario has not been captured in prior work of (decentralized) MCFE is
historically reasonable: in single-input FE, there is only one encryptor. When this encryptor wants to
bias the result computed by the functional decryptor, he can encrypt an invalid input, such as values
out of the use domain or singular points of the function. Since this FE is single-input, a receiver can
trivially identify the invalidity of the input by looking at the result of the function. Therefore, the
standard security notion of single-input FE only considers the confidentiality of the individual input,
which is later inherited by DMCFE. On the other hand, a receiver in DMCFE, can only learn the joint
function evaluated on the joint inputs, then it seems not trivial to efficiently identify invalid individual
inputs of the malicious clients out of the valid ones. We stress that using functional encryption schemes
for modular inner product over Zp where p can be any prime [ALS16] to reduce the inner-product
value space would not solve this problem. An adversary can always inject an arbitrary value to make
the computation over Zp become uniformly random over the space. Therefore, guaranteeing that each
encrypted input is within a specified range will cause overhead costs but plays an important step in
tackling this issue.

Our contributions for verifiable DMCFE can be listed as:

– Concept: We introduce the definition of verifiable DMCFE with the ability to identify malicious
senders. The verifiability guarantees that the decryption process, given as input a vector of ci-
phertexts and functional key shares that passed public verification schemes, always outputs the
delegated functions evaluated on a vector of inputs satisfying specific predicates. If any verification
fails, verifiability guarantees that malicious senders will be identified.

– Technique: We develop a technique called Combine-then-Descend. This technique enables senders
to combine their verifiable private inputs in exponents in a decentralized manner. Subsequently,
the final result is descended to obtain the sum in scalars, which can be used within a pairing-based
protocol. Private inputs are put in exponent to facilitate efficient verification using Σ-protocols.
We exploit the particular setting of class group in which the final result falls in a subgroup
where the discrete logarithm problem is easy. Then, we construct the One-time Decentralized Sum
(ODSUM) scheme in class groups, which serves as the building block for subsequent constructions.

– Construction: We present a concrete construction of range-verifiable DMCFE for inner product.
We show a technique of extending from one-time security to multiple-time security for the ODSUM
scheme that preserves the efficiency of the proof of correct encoding. The resulting DMCFE scheme
then has verifiability with overhead costs depending only on the range proof for the ciphertext.
Notably, our approach efficiently addresses the problem of identifying an unbounded number of
malicious senders, which remained unsolved in secure aggregation protocols like ACORN.

1.1 Technical Overview

Combine-then-Descend Technique. We construct a new decentralized sum scheme (DSUM) in a DDH
group that has an easy DL subgroup (class group, [CL15]). Our DSUM scheme will not compute the
pair-wise shared masks for private input by using a pseudo-random function (PRF) as in [CDSG+20].
The reason is that using a general non-interactive zero-knowledge argument (NIZK) to prove the
correct computation of a PRF on input an exchanged key can be very expensive. Instead, each private
input will be encoded as a power of the generator f of the easy DL subgroup and masked directly by
pair-wise exchanged keys in the bigger group as follows

Ci = fxi ·

∏
i<j

Tj ·
∏
i>j

T−1j

ti

.

Here, Ci is the ciphertext of a sender Si that encrypts xi under a secret key ti and each (Tj)
ti is a

Diffie-Hellman exchanged key with a public key Tj of another sender Sj . Given public parameters
(f, (Tj)j 6=i), then proving that Ci is encrypted correctly with the witness (xi, ti) can be done effi-
ciently by using a Σ-protocol in an unknown-order group [GPS06,CCL+20]. After verifying that all
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ciphertexts are valid, a receiver can combine them into f
∑
i xi =

∏
i Ci, then efficiently descend the

sum
∑
i xi from the power of f . Unlike in the standard DDH group, there is no restriction on the

size of the sum to be descended when this DSUM scheme is instantiated in a class group. Therefore,
with only a constant overhead for proving time and proof size, this DSUM scheme allows senders to
jointly compute the sum of private random shares of other cryptographic protocols and to efficiently
identify the senders who gave malformed ciphertexts. However, to decentralize an MCFE scheme for
inner product as in [CDG+18], this DSUM scheme is not yet enough since for each setup of pair-wise
key exchanges, the scheme only supports one-time encryption (ODSUM). We then show an extension
from one-time secure DSUM to multiple-time secure DSUM by leveraging the encryption with labels
of inner-product MCFE scheme in [CDG+18] itself so that the correct encryption of the resulting
DSUM scheme can still be efficiently proved and verified by a Σ-protocol.

Range-Verifiable DMCFE for Inner Product. To mitigate the effect of malicious inputs on the inner-
product evaluation, each sender is restricted to encrypt values within a data range, which is relatively
small compared to the possible range of the plaintexts. We design a decentralized MCFE scheme where
anybody can verify the correctness of each encryption and each functional key share. Our work will
not focus on the proof schemes, but on the design of encryption scheme such that the relations for
proofs of correct generation are simplified.

We use the following building blocks: the MCFE scheme for inner product from [CDG+18], a
Σ-protocol, a range proof on Pedersen commitments, and the ODSUM scheme that we presented
above.

To recall, a ciphertext in the MCFE scheme [CDG+18] is computed in the form of a Pedersen
commitment with message xi and an opening sMCFE,i, namely [ci] = [u>` ]·sMCFE,i+[xi] where [u`] ∈ G2

is the output of a random oracle taking a label ` as input, and sMCFE,i is a private encryption key
that is chosen uniformly from Z2

p, and xi ∈ Zp is the value to encrypt. For an inner-product function
y, the functional decryption key is computed as dky = (dk :=

∑
i sMCFE,i · yi,y). This scheme can

be transformed into a decentralized MCFE by letting each sender use DSUM to encrypt his share of
functional key sMCFE,i · yi, so that dky will be revealed as the sum of all senders’ shares.

For the ciphertext verification (and also for the key share verification), a commitment of private
key sMCFE,i needs to be produced as ([u>`MCFE,b

] · sMCFE,i)b∈[2] where [u`MCFE,b
] ∈ G2 is the output of a

random oracle taking an initialization label `MCFE,b as input, and published since the key generation
process. The relation for a proof of correct encryption now states that a ciphertext is correct if it
encrypts a value within a data range under the committed private key. A proof scheme for this relation
is a combination of a Pedersen-commitment range proof and a Σ-protocol in the standard DDH group.

For the key share verification, on one hand we want a DSUM scheme that supports multi-label
encryption as in [CDSG+20], that is, only ciphertexts generated under the same label can be combined
to decrypt the sum of encrypted inputs. If an adversary mixes and matches ciphertexts of different
labels, he receives nothing. On the other hand, the relation for a proof of correct encryption has to be
simple so that it can be proved by a Σ-protocol. An MCFE for inner product (so for the sum) has the
former property, while an ODSUM has the latter. Therefore, we leverage both these schemes to achieve
a label-supporting LDSUM with efficient proofs of correctness: in the key generation process, each
sender publishes an ODSUM encryption of his private MCFE key sLDSUM,i ∈ Zp as his public key, then
each input xi is encrypted by the MCFE scheme under a label ` and a private key sLDSUM,i. To decrypt
the sum

∑
i xi, a receiver first collects all senders’ public keys to reveal dk1 =

∑
i sLDSUM,i ∈ Zp, which

is exactly the MCFE functional decryption key for vector 1 = (1, ..., 1) (the sum). Using dk1, he can
continue to decrypt the sum of xi that is encrypted by the MCFE scheme. An important point is that
the order of the easy-DL subgroup in the class group can be instantiated to be equal to the prime
order p of the standard DDH group. Therefore, both the encryption-key space of LDSUM and the
plaintext space of ODSUM are Zp.

A final point to note is that when using the LDSUM scheme to encryptMCFE key shares sMCFE,i ·yi,
the functional key dk in dky = (dk :=

∑
i sMCFE,i · yi,y) may not be revealed as a scalar. The

reason is that LDSUM is technically a particular instantiation of the MCFE scheme for inner product
in [CDG+18], which can only decrypt when the inner product is small enough by computing a discrete
logarithm. Therefore, we will use a pairing group to solve this issue.
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1.2 Related Work and Comparisons

Formalization. Our definition of verifiable decentralized MCFE is a generalized computational version
of the verifiability for MIFE in [BGJS16]. The first additional point is that the verifiability in our
definition implies the validation of encrypted inputs with respect to a class of predicates. Moreover,
the decentralized multi-client setting is a more general context: there is no central functional key
authority, and each sender generates ciphertexts and functional key shares independently. While this
setting is not considered in [BGJS16], our verifiability guarantees that any malicious sender, who
gave malformed ciphertexts and functional key shares to make a global public verification with those
of other honest senders fail, will be identified. On the other hand, if we restrict the functionality
to be the sum of encrypted inputs, then we can obtain an analogous input validation for secure
aggregation (ACORN protocols) as in [BGL+22]. Our protocol and ACORN protocols [BGL+22]
have been independently developed using completely different approaches, which we consider below.

Solutions for Efficient Malicious Sender Identification For all protocols that allow multiple senders
to compute a joint function on their private inputs, Malicious Sender Identification is a desirable
feature, but it is not obvious to obtain within a practical efficiency. An example is that both our
DMCFE scheme and the ACORN protocols in [BGL+22] need a decentralized sum to allow senders to
generate ciphertexts that encrypt the decryption key shares of the bigger protocol in a decentralized
manner. We both had the same problem in achieving the input validation: it could be very costly to
use a general NIZK to prove and verify the correct encryption of the initial underlying decentralized
sum.

To overcome this issue, the authors in [BGL+22] proposed two protocols: ACORN-detect and
ACORN-robust. The first allows validating the aggregated (decryption) key, which is combined from
all key shares of senders. Each key share is committed by a Pedersen commitment, and the combined
key is compared with the aggregation of committed key shares thanks to the homomorphic property
of the commitment. Besides requiring an interactive Σ-protocol between the server and each sender,
a major drawback is that now a sender can send a malicious key share to make the combined key
broken without being identified. The second protocol ACORN-robust can identify malicious senders
and remove their inputs based on the help of neighbour honest senders, but allows at most 1

3 number
of senders to be malicious and at least 6 rounds of interaction between each sender and the server
(more rounds of interaction may happen with a decreasing probability). In our verifiable inner-product
DMCFE scheme, we gain the efficiency by constructing and then adapting a new decentralized sum
that is efficient to verify. The result covers all and even better advantages of the two previous ACORN
protocols: our DMCFE scheme has malicious sender identification, requires no round of interaction
between each sender and a receiver, allows an unbounded number of malicious senders, and eventually
allows a larger class of functionality (inner product over sum). Notably, in our verifiable DMCFE
scheme, the constant time (group exponentiations) and the constant size (group elements) for proving
each key share can even be more efficient than those for each ciphertext, which are dominated by a
range proof as in ACORN.

2 Preliminaries

2.1 Groups and Assumptions

Prime Order Group. Let GGen be a prime-order group generator, a probabilistic polynomial time
(PPT) algorithm that on input the security parameter 1λ returns a description G = (G, p, P ) of an
additive cyclic group G of order p for a 2λ-bit prime p, whose generator is P . For a ∈ Zp, define
[a] = aP ∈ G as the implicit representation of a in G.

From a random element [a] ∈ G, it is computationally hard to compute the value a (the discrete
logarithm problem). Given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute [ax] ∈ G and
[a+ b] = [a] + [b] ∈ G.

Definition 1 (Decisional Diffie-Hellman Assumption). The Decisional Diffie-Hellman As-
sumption states that, in a prime-order group G $←− GGen(1λ), no PPT adversary can distinguish
between the two following distributions with non-negligible advantage:

{([a], [r], [ar])|a, r $←− Zp} and {([a], [r], [s])|a, r, s
$←− Zp}.
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Equivalently, this assumption states it is hard to distinguish, knowing [a], a random element from the
span of [a] for a = (1, a), from a random element in G2: [a] · r = [ar] = ([r], [ar]) ≈ ([r], [s]).

Pairing Group. Let PGGen be a pairing group generator, a PPT algorithm that on input the
security parameter 1λ returns a description PG = (G1,G2,GT , p, P1, P2, e) of asymmetric pairing
groups where G1, G2, GT are additive cyclic groups of order p for a 2λ-bit prime p, P1 and P2 are
generators of G1 and G2, respectively, and e : G1 × G2 −→ GT is an efficiently computable (non-
degenerate) bilinear group elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs as the
implicit representation of a in Gs. Given [a]1, [b]2, one can efficiently compute [ab]T using the pairing
e.

Definition 2 (Symmetric eXternal Diffie-Hellman Assumption). The Symmetric eXternal
Diffie-Hellman (SXDH) Assumption states that, in a pairing group PG $←− PGen(1λ), the DDH as-
sumption holds in both G1 and G2.

Class Group. We recall the notion of a DDH group with an easy DL subgroup (first introduced
in [CL15]), which can be instantiated from class groups of imaginary quadratic fields and also recall
the corresponding computational assumptions.

Definition 3 (Generator for a DDH group with an easy DL subgroup [CCL+19,CCL+20]).
Let GenClassGroup be a pair of algorithms (Gen,Solve). The Gen algorithm is a group generator which
takes as inputs a security parameter λ and a prime p and outputs a tuple (p, s̃, ĝ, f, ĝp, Ĝ, F, Ĝ

p). The
set (Ĝ, ·) is a cyclic group of odd order ps where s is an integer, p is a µ-bit prime, and gcd(p, s) = 1.
The algorithm Gen only outputs an upper bound s̃ of s. The set Ĝp = {xp, x ∈ Ĝ} is the subgroup of
order s of Ĝ, and F is the subgroup of order p of Ĝ, so that Ĝ = F × Ĝp. The algorithm Gen outputs
f , ĝp and ĝ = f.ĝp which are respective generators of F, Ĝp and Ĝ. Moreover, the DL problem is easy
in F , which means that the Solve algorithm is a deterministic polynomial time algorithm that solves
the discrete logarithm problem in F .

An important feature of the GenClassGroup is that we can choose the same prime order as in the
standard DDH (including pairing groups) for the easy DL subgroup. A concrete instantiation of such
a group can be found in [CCL+19].

Let gp be a random power of ĝp, Gp be a subgroup generated by gp, and G be a subgroup generated
by g := gpf . The following assumption is called Hard subgroup membership assumption, which states
that it is hard to distinguish random elements of Gp in G.

Definition 4 (HSM assumption [CCL+20]). Let GenClassGroup = (Gen,Solve) be a generator for
DDH groups with an easy DL subgroup. Let (s̃, f, ĝp, Ĝ, F ) be an output of Gen, gp be a random power
of ĝp, and g := gpf . We denote by D (resp. Dp) a distribution over the integers s.t. the distribution
{gx, x ←↩ D} (resp. {ĝxp , x ←↩ Dp}) is at distance less than 2−λ from the uniform distribution in 〈g〉
(resp. in 〈ĝp〉) . Let A be an adversary for the HSM problem, its advantage is defined as:

AdvHSM
A (λ) :=

∣∣∣∣∣∣∣∣∣∣∣
Pr


(s̃, f, ĝp, F, Ĝ

p)←− Gen(1λ, p), t←− Dp, gp = ĝtp,

x←↩ D, x′ ←↩ Dp, b
$←− {0, 1},

Z0 ←− gx, Z1 ←− gx
′

p ,

b′ ←− A(p, s̃, f, ĝp, gp, F, Ĝp, Zb,Solve(·))

: b = b′

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
The HSM problem is said to be hard in G if for all probabilistic polynomial time attacker A,

AdvHSM
A (λ) is negligible.

From [CLT18,CCL+19], one can set S := 2λ−2 ·s̃, and instantiate Dp as the uniform distribution on
{0, ..., S} and D as the uniform distribution on {0, ..., pS}. We also put the Low order assumption and
the Strong root assumption in Appendix A, which is used to prove the soundness of our Σ-protocol
over the class group.
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2.2 Non-interactive Zero-knowledge Proofs

Zero-knowledge Proofs. Let R be a polynomial-time decidable relation. We call w a witness for a
statement u if R(u;w) = 1. A language L associated with R is defined as L = {u|∃w : R(u;w) = 1}.
A zero-knowledge proof for L consists of a pair of algorithms (P,V) where P convinces V that a
common input u ∈ L without revealing information about a witness w. If u /∈ L, P has a negligible
chance of convincing V to accept that u ∈ L. In a zero-knowledge proof of knowledge, P additionally
proves that it owns a witness w as input such that R(u;w) = 1. In this work, we focus on the non-
interactive proofs where P sends only one message π to V. On the input π, some public parameters
and its own inputs, V decides to accept or not. A formal definition, from [AGM18,BFM88,FLS90],
is given below.

Definition 5 (Non-interactive Zero-knowledge Argument). A NIZK argument for a language
L defined by an NP relation R consists of a triple of PPT algorithms (SetUp,Prove,Verify):

– SetUp(λ): Takes as input a security parameter λ, and outputs a common reference string (CRS)
σ. The CRS is implicit input to other algorithms;

– Prove(u,w): Takes as input a statement u and a witness w, and outputs an argument π.
– Verify(u, π): Takes as input a statement u and an argument π, outputs either 1 accepting the

argument or 0 rejecting it.

Sometimes in this paper we will call π a proof. The algorithms satisfy the following properties.

1. Completeness. For all u,w such that R(u;w) = 1,

Pr

[
σ ←− SetUp(λ),

π ←− Prove(u,w)
: Verify(u, π) = 1

]
= 1.

2. Computational Soundness. For all PPT adversaries A, there is a negligible function µ(λ) such
that

Pr

[
σ ←− SetUp(λ),

(u, π)←− A(σ)
: Verify(u, π) = 1 ∧ u /∈ L

]
≤ µ(λ).

3. Zero-Knowledge. There exists a PPT simulator (S1,S2) such that for all PPT adversaries (A1,A2),
there is a negligible function µ(λ) such that

∣∣∣∣∣Pr
σ ←− SetUp(λ),

(u,w, st)←− A1(σ)

π ←− Prove(u,w)

:
A2(σ, π, st) = 1

∧R(u;w) = 1


−Pr

(σ, τ)←− S1(λ),(u,w, st)←− A1(σ)

π ←− S2(σ, u, τ)
:
A2(σ, π, st) = 1

∧R(u;w) = 1

 ∣∣∣∣∣ ≤ µ(λ).
where τ is a trapdoor for σ and st is an internal state.

We defer the definitions and notations for non-interactive zero-knowledge arguments of knowledge
and range proof to Appendix A.

2.3 Decentralized Sum

The decentralized sum (DSUM) [CDSG+20] is a primitive that allows several parties of a group to
commit to values, so that only the sum of their values can be revealed when all parties of the group
have sent the shares. Another important feature of DSUM is that there is no trusted party: each party
totally controls the generation of its secret key. The definition of this primitive was first introduced
as a particular case of the general Dynamic Decentralized Functional Encryption in [CDSG+20]. For
the use in this work, we focus on a more relaxed security: given all senders’ shares, a receiver cannot
learn any information about individual inputs beyond their sum.
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Definition 6 (Decentralized Sum). A decentralized sum over an Abelian groupM and a set of n
senders consists of four algorithms:

– SetUp(λ): Takes as input the security parameter λ, and outputs the public parameters pp. The
public parameters are implicit arguments to all the other algorithms;

– KeyGen(): This is a protocol between the senders (Si)i∈[n] that eventually each generates its own
secret key ski. The protocol also outputs a public key pk, which can be an implicit argument;

– Encrypt(ski,mi): Takes as input a secret key ski and a message mi. Parses mi = (xi, `) where
xi ∈M and ` can be considered as an encryption label. Outputs the ciphertext ct`,i;

– Decrypt(ε, (ct`,i)i∈[n]): Takes as input an empty key ε (no private decryption key is required) and
an n-vector ciphertext (ct`,i)i∈[n] under the same label `. Returns

∑
i∈[n] xi ∈M or ⊥.

Correctness. Given pp ← SetUp(λ), ((ski)i∈[n], pk) ← KeyGen(), and cti,` ← Encrypt(ski,mi) where
mi = (xi, `) for all i ∈ [n], then the probability that Decrypt(ε, (ct`,i)i∈[n]) =

∑
i∈[n] xi is equal to 1.

Definition 7 (IND-Security Game for DSUM). Let us consider a DSUM scheme over a message
space M and a set of n senders. No adversary A should be able to win the following security game
with a non-negligible probability against a challenger C:

– Initialization: the challenger C runs the setup algorithm pp ← SetUp(λ) and the key generation
((ski)i∈[n], pk)← KeyGen() and chooses a random bit b $←− {0, 1}. It sends (pp, pk) to the adversary
A.

– Encryption queries QEncrypt(i, x0, x1, `): A has unlimited and adaptive access to a Left-or-Right
encryption oracle, and receives the ciphertext ct`,i generated by Encrypt(ski, (xi, `)). Any further
query for the same pair (`, i) will later be ignored.

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive corruption queries
on input index i, to get the secret key ski of any sender i of its choice.

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β of the security
game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of corrupted senders (the
set of indexes i input to QCorrupt during the whole game), and HS is the set of honest (non-corrupted)
senders. We set the output to β ←− b′, unless one of the three cases below is true, in which case we set
β

$←− {0, 1}:

1. some QEncrypt(i, x0i , x
1
i , `)-query has been asked for an index i ∈ CS with x0i 6= x1i ;

2. for some label `, an encryption-query QEncrypt(i, x0i , x
1
i , `) has been asked for some i ∈ HS, but

encryption-queries QEncrypt(j, x0j , x
1
j , `) have not all been asked for all j ∈ HS;

3. for some label `, there exists a pair of vectors (x0 = (x0i )i,x
1 = (x1i )i) such that

∑
i x

0
i 6=

∑
i x

1
i ,

when
– x0i = x1i , for all i ∈ CS;
– QEncrypt(i, x0i , x

1
i , `)-queries have been asked for all i ∈ HS.

We say this DSUM is IND-secure if for any adversary A,

AdvindDSUM(A) = |P [β = 1|b = 1]− P [β = 1|b = 0]|

is negligible.

Weaker Notions. For some weaker variants of indistinguishability, some queries can only be sent
before the initialization phase:

– Selective Security (sel− IND): the encryption queries (QEncrypt) are sent before the initialization;
– Static Security (sta− IND): the corruption queries (QCorrupt) are sent before the initialization.
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3 ODSUM from Combine-then-Descend Technique

3.1 Motivation

In a high level overview, we want to develop a concrete DSUM scheme such that no adversary playing
on behalf of some senders can make the decryption with other honest senders’ encryptions fail, for
example by behaving maliciously in the KeyGen process or sending maliciously generated encryptions.

A straight approach is letting each sender use a general NIZK to prove the correctness of his
encryptions and send the proofs with them. However, this approach may bring a heavy computational
overhead for the encryption time. For example, given a simplified instantiation (without the All-or-
Nothing Encapsulation layer) of DSUM scheme from the construction in [CDSG+20], to encrypt a
message xi ∈ Zp under a label ` ∈ {0, 1}∗, a sender Si computes a ciphertext

c`,i = xi +
∑
i<j

PRF((Tj)
ti , `)−

∑
i>j

PRF((Tj)
ti , `) ∈ Zp.

where PRF is a pseudorandom function, and each (Tj)
ti is a pair-wise exchanged key in a DDH group

G with a public key Tj and a secret key ti. The complex part to be implemented for NIZK is the
computation of the pseudorandom function on input a pair-wise exchanged key and an encryption
label.

Our expected DSUM scheme will remove the use of PRF in the above manner. Instead, the input is
encoded as a power of a (sub)-group generator f and is directly masked by group multiplications with
the pair-wise exchanged keys. This helps greatly simplify the relation of correct encryption so that
each ciphertext can be proved and verified by using a Σ-protocol only. As the computational cost and
communication cost of such a Σ-protocol are constant, then the overhead is asymptotically optimal.
After combining all valid encryptions by multiplying them together, the pair-wise masks vanish, and
we want the receiver to efficiently descend the sum from the exponent of f . We refer to this technique
as the combine-then-descend technique. The DDH groups with an easy DL subgroup [CL15], which
are instantiated in class groups of imaginary quadratic fields, is an extremely suitable environment to
construct our DSUM scheme with those desired properties. Moreover, unlike the composite modulus
for plaintext in Paillier encryption, we can choose a prime for the order of f before creating a class
group, which makes the sum computed by the DSUM scheme automatically compatible with other
applications in pairing groups.

3.2 Class Group-Based One-time Decentralized Sum (ODSUM)

We construct a DSUM scheme from the combine-then-descend technique:

– SetUp(λ): It generates a DDH group with an easy DL subgroup (s̃, f, ĝp, Ĝ, F )←− GenClassGroup(1λ, p).
It samples a t←↩ Dp and sets gp = ĝtp

3. The public parameters are pp = (s̃, f, ĝp, gp, Ĝ, F, p), which
is an implicit input to other algorithms.

– KeyGen(): Each sender generates a secret key ski = ti ←↩ Dp and publishes Ti = gtip . The public
key is defined as pk = (Ti)i∈[n].

– Encrypt(xi, pk, ski): The encryption is supposed to be done one time for one message in the
protocol, so there is no label. It generates a ciphertext

Ci = fxi ·

∏
i<j

Tj ·
∏
i>j

T−1j

ti

.

– Decrypt(ε, (Ci)i∈[n]) : No decryption key is required (empty key ε). It computes M =
∏
i∈[n] Ci

and outputs α←− Solve(M) ∈ Zp or ⊥.

3 This step can be done in a decentralized manner, with up to nSetUp − 1 malicious parties out of nSetUp as in
the interactive setup for the CL scheme in [CCL+20].
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Correctness. Given pp ←− SetUp(λ), ((ski)i, pk) ←− KeyGen(), and the ciphertexts Ci ←− Encrypt(xi,
pk, ski) for i ∈ [n], we have

M =
∏
i∈[n]

Ci =
∏
i∈[n]

fxi ·
∏
i<j

Tj ·
∏
i>j

T−1j

ti
= f

∑
i∈[n] xi ·

∏
i∈[n]

g
∑
i<j tjti−

∑
i>j tjti

p = f
∑
i∈[n] xi ,

and Solve(M) =
∑
i∈[n] xi.

An important advantage of this scheme is that a proof of correct encryption can be generated by
using a Σ-protocol in an unknown-order group [GPS06], which has a soundness based on the Strong
Root Assumption and the γ-Low Order Assumption in class groups [CCL+20]. Moreover, thanks to
the easy DL subgroup generated by f , there is no restriction on the size of the sum to be aggregated.
If the above scheme is in a standard DDH group, a range proof for each encrypted input is required
and thus the computational overhead and the proof size can not be constant anymore.

On the other hand, we call the above scheme as one-time decentralized sum (ODSUM), as it
only supports one-time secure encryption. Therefore, each sender is supposed to encrypt a message
once only. Without this restriction, an adversary can mix and match between (possibly) multiple
ciphertexts of the same sender with other senders’ ciphertexts in decryption to extract information
related to the mixed-and-matched encrypted inputs. Later, we will provide a technique to extend from
one-time security to multiple-time security and show that the extended DSUM scheme is applicable
to be used in verifiable decentralized MCFE for inner product.

One-time Security Model. The DSUM scheme described in Section 3.2 is one-time secure, therefore
the security model is as defined in Definition 7, except for the encryption oracle:

– Encryption queries QEncrypt(i, x0, x1): A has unlimited and adaptive access to a Left-or-Right
encryption oracle, and receives the ciphertext cti generated by Encrypt(ski, xi) (no label `). Any
further query for the same sender i will later be ignored.

Theorem 1. The One-time Decentralized Sum scheme described in Section 3.2 is IND-secure under
the HSM assumption, as in the one-time security model above. More precisely, we have

AdvindODSUM(t, qE) ≤ 2n(n− 1)2 · (AdvHSM(t) + 2−2λ)

where

– AdvindODSUM(t, qE) is the best advantage of any PPT adversary running in time t with qE encryption
queries against the IND-security game of the ODSUM scheme;

– AdvHSM(t) is best advantage of any PPT adversary running in time t to distinguish a HSM in-
stance.

– qE ≤ n according to the security model of ODSUM.

Proof. We may note that to have a non-negligible advantage of winning the game, the adversary has
to let at least two clients be non-corrupted (honest) such that each of them has two different messages
(x0, x1) for encryption queries. We call such clients as explicitly honest clients. Indeed,

– if there is no explicitly honest client: unless the game output β is randomized by the finalizing
condition 1 in Definition 7, the adversary has only access to the QEncrypt for any client index i
of the same message xbi = x0i = x1i , which implies that the adversary has no information about b;

– if there is only one explicitly honest client: we denote by (i, x0i , x
1
i ) with x0i 6= x1i be the only query

of two different messages to QEncrypt, then the game output β is randomized by the finalizing
condition 3 in Definition 7.

From above, we consider all PPT adversaries that let at least two clients be explicitly honest. We
proceed by using a hybrid argument. Let A be a PPT adversary running in time t. For any game G,
we write AdvG the advantage of A in the game G. Note that G0 is the security game defined in the
one-time security model, whereas AdvG1 = 0, since the adversary’s view in G1 does not depend on
the random bit b $←− {0, 1}.
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Game G∗0: this game is as G0, except the challenger guesses the number of explicitly honest clients.
The challenger samples κ $←− [2, n]. If eventually the number of explicitly honest clients is not κ,
the game output is β $←− {0, 1}. We have that AdvG∗0 =

AdvG0

n−1 . For all t ∈ [2, κ], we define the
following games.

Game G∗0,t: this game is asG∗0, except that for the first explicitly honest client id1 ∈ [n], QEncrypt(id1,
x0id1 , x

1
id1

) uses

Cid1 = f
xbid1
−
∑
j∈{2,t} uj ·

∏
id1<j

(Tj)
tid1 ·

∏
id1>j

(Tj)
−tid1 ,

where uj
$←− Zp for all j ∈ [t]. For the ρ’th explicitly honest client idρ with 1 < ρ ≤ t, QEncrypt(idρ,

x0idρ , x
1
idρ

) uses

Cidρ = f
xbidρ +uρ ·

∏
idρ<j

(Tj)
tidρ ·

∏
idρ>j

(Tj)
−tidρ

The changes from G∗0 are highlighted in gray. From G∗0 to G∗0,2, we construct a sub-transition
with a similar strategy as in the IND-security proof for the CL encryption scheme [CLT18]:
– Game G0

sub: this game is as G∗0, except that the challenger guesses the second explicitly
honest client, denoted by id2. If the guess is incorrect, the challenger aborts and returns a
random bit. This incurs a security loss of n.

– Game G1
sub: this game is as G0

sub except that the challenger creates secret keys (ti)i∈[n] from
a distribution D instead of Dp, so that (ti)i∈[n] are close to be uniform over the order of G
(the subgroup generated by gpf). For the pairwise-shared mask Kid2,i := (Tid2)

ti = (Ti)
tid2

with i 6= id2 that appears in the encryption queries for id2 and i respectively, the challenger
will now compute Kid2,i = (Tid2)

ti . These two modifications does not change the adversary’s
view, so the simulation remains perfect.

– Game G2
sub: by guessing as in G0

sub, the challenger creates Tid2 = fug
tid2
p with u $←− Zp and

tid2 ←↩ Dp. In other words, Tid2 is close to be uniform over G. It computes Kid2,i with i 6= id2
as in the previous game, so we have

Kid2,id1 = (Tid2)
tid1 = futid1 g

tid2 tid1
p .

The gap between G0
sub and G2

sub is∣∣∣AdvG0
sub
− AdvG2

sub

∣∣∣ ≤ AdvHSM(t).

As p is a 2λ-bit prime, the probability that u = 0 mod p is a negligible 2−2λ. On the other
hand, tid1 is close to be uniform over the order nG = psp of G with gcd(p, sp) = 1. Therefore
the value (tid1 mod p) appearing in the exponent of f and the value (tid1 mod sp) appearing
in the exponent of gp are independent (more details in Lemma 1, [CCL+19]). Unless u = 0
mod p, the value (utid1 mod p) is then uniformly random over modulus p, even when an
unbounded adversary can extract (tid1 mod sp) from Tid1 and (Ki,id1)i 6=id1 .

– Game G3
sub: this game is as G2

sub, except that Kid2,id1 is computed as

Kid2,id1 = fµ2+utid1 g
tid2 tid1
p = fµ2(Tid2)

tid1

where µ2
$←− Zp. Unless u = 0 mod p, the distributions {utid1 mod p : tid1

$←− Zp} in G2
sub

and {µ2 + utid1 : µ2
$←− Zp, tid1

$←− Zp} in G3
sub are the same, so we have∣∣∣AdvG2

sub
− AdvG3

sub

∣∣∣ ≤ 2−2λ.

By switching Tid2 = fug
tid2
p back to Tid2 = g

tid2
p and lifting the requirement that the challenger

has to guess id2, we obtain the game G∗0,2. Formally, we have∣∣∣AdvG∗0 − AdvG∗0,2

∣∣∣ ≤ 2n · (AdvHSM(t) + 2−2λ).
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The transition from G∗0,t−1 to G∗0,t for t ∈ [3, κ] is similar: the challenger has to guesses the t-th
explicitly honest client. If the guess is unsuccessful, the challenger aborts and returns a random
bit. As before, this incurs a security loss of n. We then use a similar game-based sub-transition
as above. Eventually, we obtain∣∣∣AdvG∗0 − AdvG∗0,κ

∣∣∣ ≤ 2(n− 1)n · (AdvHSM(t) + 2−2λ).

Game G∗1,κ: For all i ∈ [n], we put ∆i = x0i − xbi . This game is as G∗0,κ except that ut is replaced
by ut +∆idt for all t ∈ [2, κ]. As ut is sampled uniformly, then the transition from G∗0,t to G∗1,t
remains perfect.
On the other hand, by the condition (b) in the security game, we know that

∑
t∈[κ] x

0
idt

=∑
t∈[κ] x

1
idt
, this implies that x0id1 = xbid1 −

∑
j∈{2,t}∆idt . Therefore, we have

fx
b
id1
−
∑
j∈[2,κ](uj+∆idt ) = fx

0
id1
−
∑
j∈[2,κ] uj

and
f
xbidρ+(uρ+∆idρ ) = f

x0
idρ

+uρ

for 1 < ρ ≤ κ. In other words, this game is as G∗0,κ except that xbidρ is replaced by x0idρ for all
ρ ∈ [κ]. We transition gradually from G∗1,κ to G∗1 as a switch back from G∗0,κ to G∗0 when xbidρ is
replaced by x0idρ for all ρ ∈ [κ]. Hence, all the answers to encryption queries in G∗1 are encryptions
of x0, which is independent of b. In the game G1, we finally lift the requirement that the challenger
has to guess the number of explicitly honest clients κ.
In conclusion, we have

AdvG0
≤ 2n(n− 1)2 · (AdvHSM(t) + 2−2λ).

4 Verifiable Decentralized MCFE

We denote by F a class of n-ary functions from Mn to X . We also denote by Pm ⊂ {0, 1}∗ a class
of polynomially-time-decidable predicates for message to encrypt and by Pf ⊂ {0, 1}∗ a class of
polynomially-time-decidable predicates for function in a functional decryption key.

Definition 8 (Verifiable Decentralized Multi-Client Functional Encryption). A verifiable
decentralized multi-client functional encryption on M over (F ,Pm,Pf), and a set of n senders (Si)i
consists of eight algorithms :

– SetUp(λ): Takes as input the security parameter λ. Outputs the public parameters pp. Those
parameters are implicit arguments to all the other algorithms.

– KeyGen(): This is a protocol between the senders (Si)i that eventually each generates its own secret
key ski, its private encryption key eki. The protocol also outputs a verification key for ciphertexts
vkCT, a verification key for functional keys vkDK, a public key pk. Similar to pp, pk can be an
implicit argument.

– Encrypt(eki, xi, `,P
m
i ): Takes as input an encryption key eki, a value xi to encrypt, a label ` and

a predicate Pm
i ∈ Pm. Outputs the ciphertext C`,i.

– DKeyGenShare(ski, `f ,P
f): Takes as input a user secret key ski, a function label `f for f ∈ F , and

a predicate Pf ∈ Pf. Outputs a functional decryption key share dkf,i.
– VerifyDK((dkf,i)i∈[n], vkDK,P

f): Takes as input functional decryption key shares (dkf,i)i∈[n], a ver-
ification key vkDK and a predicate Pf ∈ Pf. Outputs 1 for accepting or 0 with a set of malicious
sendersMSdk 6= ∅ for rejecting.

– VerifyCT(C`, vkCT, (P
m
i )i∈[n]): Takes as input an n-vector ciphertext C` = (C`,i)i∈[n], a verification

key vkCT, and message predicates (Pm
i )i∈[n] ∈ (Pm)n. Outputs 1 for accepting or 0 with a set of

malicious sendersMSct 6= ∅ for rejecting.
– DKeyComb((dkf,i)i∈[n], `f ): Takes as input the functional decryption key shares (dkf,i)i∈[n], a

function label `f , and outputs the functional decryption key dkf .
– Decrypt(dkf ,C`): Takes as input a functional decryption key dkf , an n-vector ciphertext C` :=

(C`,i)i∈[n]. Outputs f(x) or ⊥.
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Correctness. Given any set of message predicates (Pm
i )i∈[n] ∈ (Pm)n and any function predicate Pf ∈

Pf: for all functions f ∈ F such that Pf(f) = 1, and all sets of values (x1, ..., xn) ∈ Mn such that
Pm
i (xi) = 1 for all i ∈ [n], and

pp←− SetUp(λ)(
(ski, eki)i∈[n], vkCT, vkDK, pk

)
←− KeyGen()

C`,i ←− Encrypt(eki, xi, `,P
m
i )∀i ∈ [n]

dkf,i ←− DKeyGenShare(ski, `f ,P
f)∀i ∈ [n]

then 
VerifyDK((dkf,i)i∈[n], vkDK,P

f) = 1

VerifyCT(C`, vkCT, (P
m
i )i∈[n]) = 1

Decrypt(dkf ,C`) = f(x1, ..., xn)

with probability 1.

Verifiability with Malicious Sender Identification. For all PPT adversaries A, the advantage AdvverifVDMCFE(A)
in the following game is negligible in λ.

– Initialization: Challenger initializes by choosing classes of predicates Pm,Pf and running pp ←−
SetUp(λ). It sends (pp,Pm,Pf) to A.

– Key generation queries QKeyGen(): For only one time in the game, A can play on behalf of
corrupted senders and call other non-corrupted senders to join a key generation protocol and
together compute (vkCT, vkDK, pk).

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive corruption queries
on input an index i, to play on behalf of sender Si in the protocol. If i was queried after QKeyGen,
then A additionally receives (ski, eki, vkCT, vkDK) and cannot play on behalf of Si in the key gen-
eration process anymore.

– Encryption queries QEncrypt(i, `,Pm
i ): A has unlimited and adaptive access to call an honest (non-

corrupted) sender Si to provide a correct encryption C`,i = Encrypt(eki, xi, `,P
m
i ) for some xi such

that Pm
i (xi) = 1. A can only choose any message predicate Pm

i ∈ Pm, otherwise the query is ignored.
– Functional key share queries QDKeyGen(i, f,Pf): A has unlimited and adaptive access to call an

honest (non-corrupted) sender Si to provide a correct functional key share dkf,i = DKeyGenShare(ski,
f,Pf). A can only choose any message predicate Pf ∈ Pf and then a function f such that
Pf(f) = 1, otherwise the query is ignored.

– Finalize: letMSA be the set of corrupted senders, then A has to output verification keys (vkCT, vkDK)
and public key pk from QKeyGen(), message predicates (Pm

i )i∈[n] ∈ (Pm)n, a function predi-
cate Pf ∈ Pf, a label `, malicious ciphertexts (C`,i)i∈MSA , and malicious functional key shares
(dkfj ,i)j,i∈MSA for a polynomially number of functions fj such that Pf(fj) = 1. The ciphertexts
of honest senders (C`,i)i/∈MSA and their functional key shares (dkfj ,i)j,i/∈MSA are automatically
completed by using the oracles QEncrypt and QDKeyGen.

– A wins the game if one of the following cases happens:
• If VerifyCT(C`, vkCT, (P

m
i )i∈[n]) = 1 and, for all function queries fj, VerifyDK((dkfj ,i)i∈[n], vkDK,

Pf) = 1: there does not exist a tuple of messages (xi)i∈[n] such that, for all i ∈ [n], Pm
i (xi) = 1,

and
Decrypt(dkfj ,C`) = fj(x1, ..., xn)

with dkfj = DKeyComb((dkfj ,i)i∈[n], fj) for all functions fj.
• If VerifyCT(C`, vkCT, (P

m
i )i∈[n]) = 0 or VerifyDK((dkfj ,i)i∈[n], vkDK,P

f) = 0 for some fj: the
union MS = MSct ∪ MSdk contains an honest sender Si, in other words i ∈ MS but
i /∈MSA.

In our definition of verifiable decentralizedMCFE, each functional key share dkf,i is assumed to contain
the description of its corresponding function f , and then a receiver can easily detect if Pf(f) 6= 1
in VerifyDK and reject the key share. Therefore, the condition that Pf(fj) = 1 in the finalization
phase of the verifiability game makes sense. The first winning condition is determined statistically:
the validity of ciphertext verification and functional key verification guarantees that an adversary
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could not produce (maliciously generated) ciphertexts (C`,i)i∈[n],i∈MSA and functional key shares
(dkfj ,i)i∈MSA , such that there exists no tuple of inputs (x1, .., xn) that satisfy all message predicates
and are consistent in the decryption to fj(x1, ..., xn) for all fj . The second winning case guarantees
that if any verification fails, then there is a negligible chance that an honest sender is accused.

Our definition of verifiability for decentralized MCFE, in particular the first winning condition, is
partially inspired by the definition of verifiability for MIFE in [BGJS16]. The intuition of verifiability
in [BGJS16] guarantees that no matter how the setup is done, for (possibly maliciously generated)
every n-vector ciphertext C that is valid to a publicly known verification, there must exist an n-
vector plaintext x such that for (possibly maliciously generated) every functional decryption key
dkf = (dk, f) that is valid to another publicly known verification, the decryption algorithm on input
(C, dkf ) must output f(x). By introducing predicates for messages to encrypt and a predicate for
function to generate a functional decryption key, our definition additionally validates the content of
messages within ciphertexts and the content of functions within functional decryption keys. Further-
more, we formalize the property of malicious sender identification in a general context where multiple
independent clients join the protocol.

To be more detailed, using our syntax for the verifiability game, the definition of verifiable MIFE
in [BGJS16] differs in the following points:

– Functional encryption. Multi-input setting is considered instead of multi-client setting, i.e. in
MIFE, there is no restriction that only ciphertexts under the same label ` can decrypt.

– Message and function predicates. In verifiable MIFE, it is fixed from the initialization that
Pm
i (x) = 1 iff x ∈M for all i ∈ [n] and Pf(f) = 1 iff f ∈ F .

– Malicious Sender Identification: In verifiable MIFE, each ciphertext is verified separately, and
the functional decryption keys dkf to be verified are given by a central key authority.

– Adversary assumption. In verifiable MIFE, the verifiability game is defined for any adversary
that has unlimited computing power and this adversary is allowed to choose pp. The advantage
of such adversary in the game is 0 (verifiability with no trusted party and perfect soundness).

Our verifiability requires computational soundness and the adversary is not allowed to create all the
setup parameters (pp must be chosen by the challenger). This relaxation might help us to obtain
verifiable MCFE schemes with practical efficiency and it might be reasonable in practice to have
minimal public parameters that only consist of computational assumptions and random oracle.

If we restrict the functionality of verifiable decentralized MCFE to be the sum of encrypted inputs,
then we can obtain a protocol with the same feature as the validation for secure aggregation with
input validation in [BGL+22]. In their ACORN protocols, each encrypted input is guaranteed to
satisfy pre-defined predicates.

Indistinguishability Security. In addition to verifiability, privacy is still an essential security goal: it
is derived from the indistinguishability security notion of decentralized MCFE [CDG+18] as follows.

Definition 9 (IND-Security Game for Verifiable DMCFE). Let us consider a Verifiable DMCFE
scheme over a set of n senders, a class function predicates Pf, and a class of message predicates Pm.
No adversary A should be able to win the following security game with a non-negligible probability
against a challenger C:

– Initialization: the challenger C runs the setup algorithm pp ←− SetUp(λ) and the key genera-
tion

(
(ski, eki)i∈[n], vkCT, vkDK, pk

)
←− KeyGen() and chooses a random bit b $←− {0, 1}. It sends

(vkCT, vkDK, pk) to the adversary A.
– Encryption queries QEncrypt(i, x0, x1, `,Pm

i ): A has unlimited and adaptive access to a Left-or-
Right encryption oracle. If Pm

i ∈ Pm and Pm
i (x

0
i ) = Pm

i (x
1
i ) = 1, then A receives the ciphertext

C`,i generated by Encrypt(eki, x
b
i , `,P

m
i ). Otherwise, the query is ignored. We note that any further

query for the same pair (`, i) will later be ignored.
– Functional decryption key queries QDKeyGen(i, f,Pf): A has unlimited and adaptive access to

the senders running DKeyGenShare(ski, `f ,P
f) algorithm for any input function f of its choice. If

Pf ∈ Pf and Pf(f) = 1, it is given back the functional decryption key share dkf,i. Otherwise, the
query is ignored.

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive corruption queries
on input index i, to get the secret and encryption keys (ski, eki) of any sender i of its choice.
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– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β of the security
game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of corrupted senders
(the set of indexes i input to QCorrupt during the whole game), and HS is the set of honest (non-
corrupted) senders. We set the output to β ←− b′, unless one of the three cases below is true, in which
case we set β $←− {0, 1}:

1. some QEncrypt(i, x0i , x
1
i , `)-query has been asked for an index i ∈ CS with x0i 6= x1i ;

2. for some label `, an encryption-query QEncrypt(i, x0i , x
1
i , `) has been asked for some i ∈ HS, but

encryption-queries QEncrypt(j, x0j , x
1
j , `) have not all been asked for all j ∈ HS;

3. for some label ` and for some function f asked to QDKeyGen, there exists a pair of vectors
(x0 = (x0i )i,x

1 = (x1i )i) such that f(x0) 6= f(x1), when
– x0i = x1i , for all i ∈ CS;
– QEncrypt(i, x0i , x

1
i , `)-queries have been asked for all i ∈ HS.

We say this verifiable DMCFE is IND-secure with respect to Pf and Pm if for any adversary A,

AdvindVDMCFE(A) = |P [β = 1|b = 1]− P [β = 1|b = 0]|

is negligible.

In this work, we also use the following weaker notion:

– Static Security (sta− IND): the corruption queries (QCorrupt) are sent before the initialization,
while encryption queries can be sent adaptively during the game.

5 A Range-Verifiable DMCFE for Inner Product

5.1 Ciphertext Verification

For each encryption label `, the ciphertext of the MCFE scheme in [CDG+18] is [ci] = [u>` ] · si + [xi]
where [u`] ∈ G2 is the output of a random oracle taking label ` as input, and si is a private encryption
key that is chosen uniformly from Z2

p, and xi ∈ Zp is the value to encrypt. The ciphertext is in the
form of a Pedersen commitment, where xi is the committed value and si is a two-dimensional opening.
There is a number of efficient range proof schemes [BBB+18,CKLR21,CGKR22] for the committed
value in the Pedersen commitment:

Rrange([c], l, r; s, x) = 1←→ [c] = [u>] · s+ [x] ∧ x ∈ [l, r]

The functional key for an inner product with y in the MCFE scheme is dky = (dk :=
∑n
i=1 yi ·si ∈

Z2
p,y). To avoid encryption under a false encryption key that is not consistent with the share siyi (and

vice versa), our scheme will require each sender to publish a commitment of his private encryption
key as comek = ([u>`MCFE,b

] · si)b∈[2] ∈ G2 during the key generation process, where ([u>`MCFE,b
])b∈[2] are

generated by a random oracle taking initialization labels (`MCFE,b)b∈[2] as input. This commitment
is perfectly binding, which later makes proofs for ciphertexts and functional keys become proofs
of membership. By using the soundness of these proofs, we can avoid a large security loss from
multiple rewinding-based extractions [PS96,SG98] when proving the verifiability of our inner-product
decentralized MCFE scheme.

Now each sender is required to provide a proof for the relation REncrypt:

REncrypt([c], comek, l, r; s, x) = 1←→


[c] = [u>] · s+ [x]
∧ x ∈ [l, r]
∧ comek = ([u>`MCFE,b

] · s)b∈[2]

The above relation defines a non-trivial language LEncrypt ( G3 for ([c], comek). On the other hand,
a Σ-protocol, denoted by NIZKkey, can be used to prove the relation Rkey:

Rkey([c], comek; s, x) = 1←→
{

[c] = [u>] · s+ [x]
∧ comek = ([u>`MCFE,b

] · s)b∈[2]

One can combine a Σ-protocol and a range proof scheme to obtain a NIZK for the relation REncrypt

by Lemma 1.
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5.2 Functional Key Share Verification

The MCFE scheme in [CDG+18] can be transformed into a decentralized MCFE by allowing each
sender to use a DSUM scheme [CDSG+20] to encrypt his share of functional key sMCFE,i · yi, so that
dky will be revealed as the sum of all senders’ shares. A requirement is that the DSUM scheme must
support multi-label encryption, that is, only ciphertexts under the same label can be combined to
decrypt the sum of encrypted inputs. For the context of decentralizedMCFE, by controlling the (inner-
product function) label in the decryption, an adversary cannot mixes shares of different functional
keys of a sender and matches them with other senders’ in the DSUM decryption to obtain valid
functional keys of non-agreed functions. As shown in Section 3.2, the ODSUM scheme does not have
this property, since we removed the pseudo-random function in the encryption to obtain efficiency for
the proof of correct encryption.

From ODSUM to Label-Supporting DSUM. To solve the problem that ODSUM does not support
multi-label encryption, we leverage again the inner-product MCFE scheme in [CDG+18] that has this
property. We first give an intuitive construction for a DSUM scheme that both supports multi-label
encryption and preserves the efficiency for the proof of correct encryption. We call this scheme LDSUM
to differentiate with ODSUM and other DSUM schemes.

– Key Generation: Each client i generates its own secret key skMCFE,i for the MCFE scheme. He
joins the key generation of ODSUM with other senders to obtain a secret key skODSUM,i and public
key ODSUM.pk in a decentralized manner. His secret key is now (skMCFE,i, skODSUM,i). He uses
ODSUM to encrypt skMCFE,i under the keys (skODSUM,i,ODSUM.pk). The resulting ciphertext,
denoted by pki, is public.

– Encryption: Each sender Si uses the MCFE scheme to encrypt his message xi under the key
skMCFE,i and a label `. The resulting ciphertext is denoted by ci,`.

– Decryption: The receiver first collects all pki and uses ODSUM to decrypt dk. Then he collects
all MCFE ciphertexts ci,` under the same label and uses the MCFE scheme to decrypt

∑
i xi with

the key dk.

The correctness of the above scheme comes from the fact that an MCFE functional key for sum,
which is presented by vector 1 = (1, ..., 1), is the sum of all senders’ MCFE secret keys. We have
dk = ODSUM.Decrypt((pki)i) =

∑
i skMCFE,i. Therefore, the correctness is implied by the correctness

of ODSUM and MCFE.
A formal description of the LDSUM scheme is given as follows.

– SetUp(λ):
1. It generates a prime-order group G := (G, p, P ) $←− GGen(1λ), and H a full-domain hash

function onto G2.
2. It generates the setup of One-time Decentralized Sum ODSUM.SetUp(λ) = (s̃, f, ĝp, gp, Ĝ, F, p)

(a class group).
3. The public parameters pp consist of ((G,H), (s̃, f, ĝp, gp, Ĝ, F, p)) and are implicit arguments

to all other algorithms.
– KeyGen():

1. Each sender generates si
$←− Z2

p for all i ∈ [n].
2. Each sender joins ODSUM.KeyGen() and obtains two instances (ti,b, Ti,b,ODSUM.pkb)b∈[2].
3. Each sender computes and publishes a global key share for the sum:

dki = (ODSUM.Encrypt(si,b,ODSUM.pkb, ti,b))b∈[2] ∈ G
2

4. For each sender, the secret key is ski = (si, ti := (ti,1, ti,2)). The public key is pk =
((ODSUM.pkb)b∈[2], (dki)i∈[n]).

– Encrypt(ski, xi, `):
1. It parses ski = (si, ti).
2. It computes [u`] = H(`), and computes [c`,i] = [u>` si + xi] ∈ G.
3. The ciphertext is C`,i := (`, [c`,i]).

– Decrypt(C`, pk):
1. It parses C` := (C`,i)i∈[n] and pk = ((ODSUM.pkb)b∈[2], (dki)i∈[n]).
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2. It recovers the (public) decryption key for the sum:

dk1 ←− (ODSUM.Decrypt((dki,b)i∈[n]))b∈[2] ∈ Z2
p.

3. Decryption for the sum: from C`,i = (`, [c`,i]), it computes

[α] =
∑
i

[ci]− [u>` ] · dk1,

and eventually solves the discrete logarithm to extract and return α. For efficient decryption,
we require α to be small enough.

A formal proof of correctness and a security analysis of the above scheme are provided in The-
orem 4. It is also more convenient to leave the relation for proof of correct generation and the
corresponding Σ-protocol in the description of the verifiable inner-product DMCFE scheme.

5.3 Description of Range-Verifiable Inner-Product DMCFE Scheme

Let n be the number of senders. The message predicate Pm(x) = 1←→ x ∈ [0, 2m−1] and the function
predicate Pf(y) = 1 ←→ yi ∈ [0, 2m − 1] for all i ∈ [n] are parameterized by a polynomially bounded
m.

– SetUp(λ):
1. It generates a pairing group PG := (G1,G2,GT , p)

$←− PGGen(1λ), and Hb a full-domain hash
function onto G2

b for b ∈ [2].
2. It generates initialization labels (`DMCFE,b)b∈[2] := ({0, 1}∗)2.
3. It generates the setup of LDSUM in G2: LDSUM.pp = LDSUM.SetUp(λ,G2).
4. The public parameters pp consist of (PG, (Hb)b∈[2], LDSUM.pp, `DMCFE) and are implicit ar-

guments to all other algorithms.
– KeyGen():

1. Each sender joins LDSUM.KeyGen() to obtain (LDSUM.ski, LDSUM.pk).
2. Each sender generates sDMCFE,i

$←− Z2
p and commits sDMCFE,i as

comDMCFE,i = ([v>DMCFE,b · sDMCFE,i]1)b∈[2];

where [vDMCFE,b]1 = H1(`DMCFE,b) for b ∈ [2].
3. For each sender, the encryption key is eki = sDMCFE,i and the secret key is ski = (sDMCFE,i,

LDSUM.ski).
4. The verification key for ciphertexts is vkCT = (comDMCFE,i)i∈[n], while for functional keys it is

vkDK = (LDSUM.pk, (comDMCFE,i)i∈[n]).
5. The public key is pk = LDSUM.pk.

– Encrypt(eki, xi, `,m):
1. It parses eki = sDMCFE,i and computes [c`,i]1 = [u>` sDMCFE,i + xi]1 where [u`]1 = H1(`).
2. It re-computes comDMCFE,i and a proof πEncrypt,i for the relation REncrypt on input (`, [c`,i]1,

comDMCFE,i,m;xi, eki).
3. It outputs the ciphertext C`,i = (`, [c`,i]1, πEncrypt,i).

– DKeyGenShare(ski, `y,m, pk):
1. It parses ski = (sDMCFE,i, LDSUM.ski), `y = (`y,b)b∈[2] and pk = LDSUM.pk.
2. It computes dki = (LDSUM.Encrypt(LDSUM.ski, sDMCFE,i,b · yi, `y,b))b∈[2].
3. It re-computes comDMCFE,i and a proof πDKeyGenShare,i for the relation RDKeyGenShare on input

(LDSUM.pk, comDMCFE,i, dki, `y; ski).
4. It outputs the functional key share dki,y = (dki, `y, πDKeyGenShare,i).

– VerifyCT((C`,i)i∈[n], vkCT,m):
1. It parses C`,i = (`, [c`,i]1, πEncrypt,i) for i ∈ [n], and vkCT = (comDMCFE,i)i∈[n].
2. For i ∈ [n]: it verifies the proof πEncrypt,i for the relationREncrypt on input (`, [c`,i]1, comDMCFE,i,m).
3. It outputs 1 for accepting if πEncrypt,i is valid for all i ∈ [n], otherwise outputs 0 with the set
MS = {i : πEncrypt,i is not valid} for rejecting.

– VerifyDK((dki,y)i∈[n], vkDK):
1. It parses the keys dki,y = (dki, `y, πDKeyGenShare,i) and vkDK = (LDSUM.pk, (comDMCFE,i)i∈[n]).
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2. From the function label `y, it verifies that yi ∈ [0, 2m − 1] for i ∈ [n]. It stops and outputs 0
if y is not valid.

3. For i ∈ [n]: it verifies πDKeyGenShare,i for the relation RDKeyGenShare on input (LDSUM.pk,
comDMCFE,i, dki, `y).

4. It outputs 1 for accepting if πDKeyGenShare,i is valid for all i ∈ [n], otherwise outputs 0 with the
setMS = {i : πDKeyGenShare,i is not valid} for rejecting.

– DKeyComb((dki,y)i∈[n], `y, pk):
1. It parses the keys dki,y = (dki, `y, πDKeyGenShare,i) and pk = LDSUM.pk.
2. It outputs [dky]2 = (LDSUM.Decrypt((dki,b)i∈[n], `y,b, LDSUM.pk))b∈[2] ∈ G2

2. In the LDSUM
decryption, it is hard to obtain dky ∈ Z2

p from [dky]2, since dky is random over Z2
p. Therefore,

we stop the LDSUM decryption once obtaining [dky]2.
– Decrypt(C`, [dky]2): It gets [α]T =

∑
i∈[n] e([c`,i]1, [yi]2) − e([u`]>1 , [dky]2), and eventually solves

the discrete logarithm in basis [1]T to return α.

The relation REncrypt that guarantees a correct encryption of a valid input xi under a committed
encryption key sDMCFE,i is defined as in Section 5.1. We can use NIZKEncrypt that is constructed as
in Section 5.1 to prove this relation. Since the LDSUM scheme uses the ODSUM as a sub-protocol
(see Section 5.2) in its key generation, we express all the terms LDSUM.pk, LDSUM.ski explicitly as
follows

– LDSUM.pk = ((TODSUM,i)i∈[n], (dkLDSUM,i)i∈[n]) ∈ G2×n ×Gn;
– LDSUM.ski = (sLDSUM,i, tODSUM,i) ∈ Z2

p × Z2.

The relation RDKeyGenShare is defined in Figure 1 and proved by NIZKDKeyGenShare in Figure 2. A remark
is that the key sLDSUM,i is verified to be consistent in between dkLDSUM,i (in class group) and dki (in
pairing group), so we need a Σ-protocol that proves the DL equality between these two groups.

RDKeyGenShare

Parameters: i, `y, `DMCFE

Statement: (TODSUM,j)j∈[n], dkLDSUM,i, comDMCFE,i, dki
Witness: sDMCFE,i, sLDSUM,i, tODSUM,i

Relation:

1. TODSUM,i = (gtODSUM,i,1 , gtODSUM,i,2)
2. dkLDSUM,i = (fsLDSUM,i,b(

∏
i<j TODSUM,j,b ·

∏
i>j T

−1
ODSUM,j,b)

tODSUM,i,b)b∈[2]

3. comDMCFE,i = ([v>DMCFE,b · sDMCFE,i]1)b∈[2] with [vDMCFE,b]1 = H1(`DMCFE,b)

4. dki = ([u>`y,bsLDSUM,i + sDMCFE,i,b · yi]2)b∈[2] with [u`y,b ]2 = H2(`y,b)

Fig. 1. The relation defines the correct generation of each functional key share

The above scheme is compatible with the definition of verifiable DMCFE in Section 4 by the
following theorem.

Theorem 2. The decentralized MCFE for inner product scheme described in Section 5.3 has correct-
ness and verifiability for range predicates in the random oracle, as in Definition 8. More precisely,

AdvverifDMCFE(t, qC , qF ) ≤ qC ·max{AdvsndNIZKEncrypt
(t), qF · AdvsndNIZKDKeyGenShare

(t)}

where

– AdvverifDMCFE(t, qc, qF ) is the best advantage of any PPT adversary running in time t against the
verifiability game in Definition 8 with qC corruption queries and qF functions for the finalization
phase;

– AdvsndNIZKEncrypt
(t) is the best advantage of any PPT adversary running in time t against the soundness

of NIZKEncrypt.
– AdvsndNIZKDKeyGenShare

(t) is the best advantage of any PPT adversary running in time t against the
soundness of NIZKDKeyGenShare.

Proof. We start with the correctness and then with the range-verifiability.
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Σ-protocol for the relation RDKeyGenShare:

Parameters: (PG,H1,H2), (Ĝ, F, gp, f, S, p), (i, `y, `DMCFE)

Statement: (TODSUM,j)j∈[n], dkLDSUM,i, comDMCFE,i, dki

Witness: sDMCFE,i, sLDSUM,i, tODSUM,i

Output: 1 if V accepts, and 0 otherwise.

Protocol:

– V verifies that dkLDSUM,i, TODSUM,j ∈ Ĝ2 for j ∈ [n].
– P commits the randomness:

1. ρLDSUM,i,ρDMCFE,i
$←− Z2

p, ρODSUM,i
$←− [0, 2λpS]2

2. RODSUM,i = (g
ρODSUM,i,b
p )b∈[2]

3. Rdki = ([u>`y,bρLDSUM,i + ρDMCFE,i,b · yi]2)b∈[2]
4. RDMCFE,i = ([v>DMCFE,b · ρDMCFE,i]1)b∈[2]
5. Let KΣ,i :=

∏
i<j TODSUM,j,b · (

∏
i>j TODSUM,j,b)

−1 ∈ G,
then RdkLDSUM,i = (fρLDSUM,i,bK

ρODSUM,i,b

Σ,i )b∈[2]
– P sends (RODSUM,i, Rdki , RDMCFE,i, RdkLDSUM,i) to V
– V chooses a random challenge α $←− [0, p− 1] and sends it to P.
– P computes the response:

1. zODSUM,i = α · tODSUM,i + ρODSUM,i ∈ Z
2. zLDSUM,i = α · sLDSUM,i + ρLDSUM,i ∈ Zp
3. zDMCFE,i = α · sDMCFE,i + ρDMCFE,i ∈ Zp

– P sends (zODSUM,i,zLDSUM,i,zDMCFE,i) to V.
– V verifies that:

1. zODSUM,i ∈ [0, (2λ + 1)pS]2 and zLDSUM,i,zDMCFE,i ∈ Z2
p

2. TαODSUM,i ·RODSUM,i = (g
zODSUM,i,b
p )b∈[2]

3. α · dki +Rdki = ([u>`y,bzLDSUM,i + zDMCFE,i,b · yi]2)b∈[2]
4. α · comDMCFE,i +RDMCFE,i = ([v>DMCFE,b · zDMCFE,i]1)b∈[2]
5. Let KΣ,i :=

∏
i<j TODSUM,j,b · (

∏
i>j TODSUM,j,b)

−1 ∈ G,
then dkαLDSUM,i ·RdkLDSUM,i = (fzLDSUM,i,bK

zODSUM,i,b

Σ,i )b∈[2]
– V rejects and stops the protocol if any check is invalid, and accepts otherwise.

Fig. 2. Note that S = 2λ−2 · s̃ and Dp is a uniform distribution over {0, ..., S}. We let ρODSUM,i be uniform in
[0, 2λpS] to obtain statistical zero-knowledge as in [GPS06].
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Correctness. Given a range predicate for input and for inner product function [0, 2m − 1], a vector y
such that yi ∈ [0, 2m−1], an n-vector plaintext x such that xi ∈ [0, 2m−1]. We consider the following
case 

pp←− SetUp(λ)(
(ski, eki)i∈[n], vkCT, vkDK, pk

)
←− KeyGen()

C`,i ←− Encrypt(eki, xi, `,m)∀i ∈ [n]

dki,y ←− DKeyGenShare(ski, `y,m)∀i ∈ [n]

Parse C`,i = (`, [c`,i]1, πEncrypt,i) and dki,y = (dki, `y, πDKeyGenShare,i), by the completeness of NIZKEncrypt

and NIZKDKeyGenShare respectively, we have that all πEncrypt,i and πDKeyGenShare,i are respectively valid.
Therefore,

VerifyCT((C`,i)i∈[n], vkCT,m) = VerifyDK((dki,y)i∈[n], vkDK) = 1.

For the decryption, we parse dki,y = (dki, `y, πDKeyGenShare,i) and pk = LDSUM.pk. By the correctness
of LDSUM (Section 5.2) and the fact that LDSUM stops and outputs [dky,b]2 before computing the
discrete logarithm, we have

[dky]2 = (LDSUM.Decrypt((dki,b)i∈[n], `y,b, LDSUM.pk))b∈[2]

= ([
∑
i∈[n]

sDMCFE,i,b · yi]2)b∈[2].

Then we have [α]T equal to∑
i∈[n]

e([c`,i]1, [yi]2)− e([u`]>1 , [dky]2)

=
∑
i∈[n]

[
(u>` sDMCFE,i + xi) · yi

]
T
−

u>` · (∑
i∈[n]

sDMCFE,i · yi)


T

=

∑
i∈[n]

xi · yi


T

As the inner product
∑
i∈[n] xi · yi is small, computing α can be done efficiently.

Verifiability. We suppose that there exists a PPT adversary A that can win the verifiability game
in Definition 8 with a non-negligible probability. Without loss of generality, the range predicate for
input and inner product function can be fixed to be [0, 2m − 1].

Except using a trivial attack, A cannot win the game by making other honest senders accused of
sending invalid ciphertexts or invalid functional key shares (the second winning condition). Indeed,
to accuse an honest sender Si, A has to broadcast some malicious share that makes the proof of
correct generation for Si’s ciphertext or for Si’s functional key share invalid. By the design of the
scheme, the only broadcast elements among senders and the receiver are the ODSUM public keys
(TODSUM,j)j∈[n] (included in LDSUM.pk), which are not used in the relation REncrypt. For the relation
RDKeyGenShare, the condition involving (TODSUM,j)j∈[n],j 6=i is the generation of dkLDSUM,i, which only
requires (TODSUM,j)j∈[n],j 6=i to be group elements in class group Ĝ. Therefore, sending an incorrect
group-encoding TODSUM,j can make the generation and then the proof fail. However, this is a trivial
attack and can be excluded, as each TODSUM,j can be efficiently verified to be in group by the public
(and by the verifier in Figure 2 also) and the public will already know it is the corrupted sender Sj
who broadcast a malicious share.

We now consider A that wins the game by winning the first condition. We let (vkCT, vkDK, pk, `,
(C`,i)i∈MSA , (dkyj ,i)j,i∈MSA) be the transcript that makes A win the game. In this case we have

VerifyCT((C`,i)i∈[n], vkCT,m) = VerifyDK((dki,y)i∈[n], vkDK) = 1.

Suppose that the transcript output by A satisfies the relations RDKeyGenShare and REncrypt.

– From RDKeyGenShare, (vkCT, vkDK, pk) is generated from KeyGen with secret keys ski = (sDMCFE,i,
(sLDSUM,i, tODSUM,i)) and encryption keys eki = sDMCFE,i. For each i ∈ [n] and each inner product
function yj , dkyj ,i is generated from DKeyGenShare on input (ski, `y, pk).
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– FromREncrypt, C`,i is generated from Encrypt on input a message xi ∈ [0, 2m−1] and an encryption
key s′DMCFE,i for each i ∈ [n].

We model the hash function H1 as a random oracle onto G2. Then comDMCFE,i is perfectly binding.
From above, we have sDMCFE,i = s′DMCFE,i. By the proved correctness of the scheme, the decryption
process with input C` = (C`,i)i∈[n] and [dky]2 = DKeyComb((dkyj ,i)i∈[n], `y, pk) will output the inner
product 〈x,yj〉 for all vectors yj . This contradicts the first winning condition, so A must break either
the soundness of NIZKEncrypt or the soundness of NIZKDKeyGenShare with the same probability of winning
the game.

If A wins the game by breaking the soundness NIZKEncrypt with a non-negligible probability, an
adversary B against the soundness of NIZKEncrypt can be constructed as follows: B plays as a challenger
in the game with A, after A finalized the game, B guesses an index i from the corrupted set MSA
and outputs the instance (`, [c`,i]1, comDMCFE,i, π

i
Encrypt,m) from A’s transcript. Given qC corrupted

senders, in the case A wins the game, the probability that B breaks the soundness of NIZKEncrypt is
1
qC

. Similarly for NIZKDKeyGenShare, given qF inner-product functions yj to be finalized, B outputs one
in n · qF instances of ((TODSUM,i)i∈[n], dkLDSUM,i, comDMCFE,i, dki,yj) from A, which incurs a security
loss of qC · qF . To finalize, we have

AdvverifDMCFE(A, t, qC , qF ) ≤ qC ·max{AdvsndNIZKEncrypt
(t), qF · AdvsndNIZKDKeyGenShare

(t)}.

As AdvsndNIZKEncrypt
(t) and AdvsndNIZKDKeyGenShare

(t) are negligible, and qC and qF are polynomially bounded,
the proof is complete.

5.4 Indistinguishability Security

Theorem 3. The Range-Verifiable DMCFE for Inner Product scheme described in Section 5.3 is
sta− IND-secure under the SXDH and HSM assumptions, as in Definition 9.

The proof is provided in Appendix B.5.

5.5 Efficiency Analysis

We assume that NIZKEncrypt is instantiated with the Σ-protocol NIZKkey and the Bulletproof for
range [BBB+18] (for the relation Rrange in Section 5.1). As far as we know, Bulletproof offers better
efficiency for batch verification than other transparent-setup non-interactive range proof schemes.
Since the scalar operation in Zp is cheap compared to the group exponentiation, we do not detail
them here. Let n be the number of senders andm be a binary upper bound of a input range [0, 2m−1].

– Proving time: NIZKEncrypt costs about 12m + 17 exponentiations with O(m) scalar operations,
while NIZKDKeyGenShare costs 16 exponentiations with O(1) scalar operations.

– Proof size: each πEncrypt,i has the size of 2 log2 dme+7 group elements and 10 scalars, while each
πDKeyGenShare has the size of 8 group elements and 6 scalars.

– Verifying time: NIZKEncrypt costs about a single multi-exponentiation of size 2m+2 log2 dme+19
with O(m) scalar operations for each ciphertext, while NIZKDKeyGenShare costs 24 exponentiations
for each key share.

For a practical parameter, one can have n = 210 and m ≤ 16. Then the costs for functional
key share are even more efficient than those for ciphertext. Compared to the DMCFE in [CDG+18],
the overhead costs from verifiability for each sender and each receiver asymptotically depend only
on m (range proof costs). Therefore, the approach of verifying each functional key share, which has
the advantage of identifying up to all n malicious senders in a non-interactive manner, is no more
prohibitively expensive in our scheme.

On the other hand, this approach is avoided in [BGL+22] for the ACORN-robust protocol since
each key share for sum can not be verified efficiently. Their alternative approach requires the help
of checking from log(n) neighboring senders, which incurs more interaction during verification and
overhead costs additionally depending on log(n) (besides range proof costs) for each sender. Their
approach also assumes that at most 1/3 number of senders misbehave.



22 Dinh Duy Nguyen, Duong Hieu Phan, and David Pointcheval

6 Discussions

6.1 Batch Verification

In our inner-product DMCFE scheme in Section 5.3, if a receiver wants to verify that the combined
functional decryption key dky is generated correctly with respect to a vector y, there is a more efficient
way than verifying each sender’s functional key share. The receiver can directly check the following
equalities

e(

n∑
i=1

comDMCFE,i,b · yi, [1]2) = e([v>DMCFE,b]1, [dkb]2)

for b ∈ [2]. When dky is correct, the above equalities are equivalent to∑
i∈[n]

(v>DMCFE,b · sDMCFE,i) · yi


T

=

v>DMCFE,b · (
∑
i∈[n]

sDMCFE,i · yi)


T

for b ∈ [2]. If any equality does not hold, then dky is maliciously generated. This verification has
perfect soundness under the condition that (vDMCFE,b)b∈[2] ∈ Z2×2

p are linearly independent. The
verification time is 2n exponentiations and 6 pairings compared to 24n exponentiations for verifying
each of n key shares. In a hybrid use, a receiver can first use this quick verification to see if dky is
correct. If it is not the case, he can continue to verify each key share to identify malicious senders.

Similarly, for batch verification of n independent ciphertexts under the same label for a range
[0, 2m−1], NIZKEncrypt when instantiated with Bulletproof costs about 3 multi-exponentiations of size
3 + 2n, a multi-exponentiation of size 2m+ 3 + n(2 log2 dme+ 5), and O(n ·m) scalar operations.

6.2 Privacy Improvement with AoNE

The All-or-Nothing Encapsulation AoNE in [CDSG+20] is an encryption which guarantees that a
receiver can reveal either all encrypted messages under the same label of senders by collecting all
their ciphertexts, or nothing. By adding a AoNE encryption layer on DSUM or DMCFE ciphertexts, the
leakage from incomplete ciphertexts can be ruled out. Due to space constraints, we put an heuristic
of applying AoNE to the verifiable DMCFE scheme while still preserving the efficiency of malicious
sender identification in Appendix C.

6.3 Perspectives

Natural questions from our work include improving the static security of the verifiable DMCFE
scheme for inner product and allowing dynamic join of new users as in [CDSG+20]. Furthermore,
obtaining practical overhead costs from verifiability for function-hiding DMCFE schemes is an inter-
esting direction.
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Definition 10 (Low Order Assumption). Consider a security parameter λ ∈ N, and γ ∈ N. The
γ-low order problem (LOPγ) is (t(λ), εLO(λ))-secure for Gen if, given the output of Gen, no algorithm
A running in time ≤ t(λ) can output a γ-low order element in Ĝ with probability greater than εLO(λ).
More precisely,

εLO(λ) := Pr

[
(s̃, f, ĝp, F, Ĝ)←− Gen(1λ, p)

(µ, d)←− A(s̃, f, ĝp, Ĝ, F )
: µd = 1, 1 6= µ ∈ Ĝ, 1 < d < γ

]
Definition 11 (Strong Root Assumption for Class Groups). Consider a security parameter
λ ∈ N, and let A be a PPT adversary. We run Gen from on input (1λ, p) to get (s̃, f, ĝp, Ĝ, F ) and
we give this output and a random Y ∈ 〈ĝp〉 as an input to A. We say that A solves the strong root
problem for class groups (SRP) if A outputs a positive integer e 6= 2k for all k and X ∈ Ĝ, such that
Y = Xe. In particular, the SRP is (t(λ), εSR(λ))-secure for Gen if any adversary A, running in time
≤ t(λ), solves the SRP with probability at most εSR(λ).

A.2 Commitments

Definition 12 (Commitment). A non-interactive commitment scheme com over a message space
Mcom, a commitment space Ccom and a opening space Ocom is defined by a tuple of three algorithms
(SetUp,Commit,Verify):

– SetUp(λ): Takes as input a security parameter λ , outputs public parameters pp (which are implicit
to other algorithms);

– Commit(m): Takes as input a message m ∈ Mcom, generates a uniformly random r ∈ Ocom.
Outputs a commitment c ∈ Ccom and the opening value r.

– Verify(c, r,m): Takes as input a commitment c, an opening r and a message m. Verifies if c is a
commitment to m with the opening r. Outputs b ∈ {0, 1}.

Definition 13 (Hiding Commitment). A commitment scheme com is said to be hiding if for any
PPT adversary A, there is a negligible function µ(λ) such that∣∣∣∣∣Pr

[
pp←− SetUp(λ), (m0,m1, st)←− A(pp),

b
$←− {0, 1} c←− Commit(mb), b′

$←− A(st, c)
: b = b′

]
− 1

2

∣∣∣∣∣ 6 µ(λ)

where the probability is over random coins in SetUp, A, Commit and in choosing b. The commitment
scheme is said to be perfectly hiding if µ(λ) = 0.

Definition 14 (Binding Commitment). A commitment scheme com is said to be binding if for
any PPT adversary A, there is a negligible function µ(λ) such that

Pr

[
pp←− SetUp(λ),

(c,m,m′, r, r′)←− A(pp)
:
Verify(c, r,m) = Verify(c, r′,m′) = 1

∧ (m 6= m′)

]
6 µ(λ)

where the probability is over random coins in SetUp, A, and Commit. The commitment scheme is said
to be perfectly binding if µ(λ) = 0.

Definition 15 (Pedersen Commitment). . LetMcom = Ocom = Zp and Ccom = G of order p.

– SetUp: Outputs [h], [g]
$←− G.

– Commit(m): Outputs r $←− Zp and c = [g] ·m+ [h] · r.
– Verify(c, r,m): Outputs 1 if c = [g] ·m+ [h] · r, and 0 otherwise.

The Pedersen commitment is perfectly hiding and computationally binding under the discrete loga-
rithm assumption.

A.3 Non-interactive Zero-Knowledge Proofs

Definition 16 (NIZK Argument of Knowledge [AGM18]). A NIZK argument of knowledge
for an NP relation R is a NIZK argument for R with the following additional extractability property:
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Computational Extraction. For any PPT adversary A, random string r $←− {0, 1}∗, there exists a PPT
algorithm K such that there is a negligible function µ(λ):

Pr

σ ←− SetUp(λ),

(u, π)←− A(σ; r)
w ←− K(σ, u, π; r)

:
Verify(u, π) = 1

∧R(u;w) = 0

 ≤ µ(λ).
K is called a knowledge extractor of A.

Definition 17 (Non-interactive Range Proof). Given a non-interactive commitment scheme
com = (SetUp,Commit,Verify), a non-interactive range proof over com is a NIZK argument of knowl-
edge for the following relation Rrange:

Rrange((com, l, r); (m, r)) = 1←→ com = Commit(m; r) ∧ l ≤ m ≤ r

Fiat-Shamir Transformation. Fiat-Shamir heuristic [FS87] is used to transforming an interactive
zero-knowledge argument of knowledge scheme to a non-interactive one. The original scheme must
have the property of being public-coin, i.e. verifier’s random coins are independent of the prover’s
messages. All random challenges are replaced by hashes of the transcript up to that point, including the
statement itself. The transformed NIZK argument is sound (or knowledge sound) and zero-knowledge
in the random oracle model.

B A Range-Verifiable MCFE for Inner Product (More)

B.1 Σ-Protocol for Encryption Key Validation

In this part, we describe the Σ-protocol NIZKkey for Rkey in Section 5.1. For the sake of clarity, we
describe the scheme and prove the properties in its interactive mode.
Given public parameters ([u], [v], [v′]) ∈ (G2)3. Let P and V be respectively the prover and the
verifier in an argument for the relation Rkey:

Rkey(comPed, comek; s, x) = 1←→ comPed = [u>] · s+ [x] ∧ comek = ([v>] · s, [v′>] · s)

P(comPed, comek; s, x) V(comPed, comek)

Commits the randomness:
rx, r, r

′ $←− Zp
r := (r, r′)
R = [v>] · r
R′ = [v′>] · r
Rx = [u>] · r + [rx]

R,R′,Rx−−−−−→
α←−−−− α

$←− Zp
Computes the responses:
t = s · α+ r

tx = x · α+ rx
t,tx−−−−−−→ Verifies the following equalities:

α · comPed +Rx=[u>] · t+ [tx]
α · comek,1 +R=[v>] · t
α · comek,2 +R′=[v′>] · t

If all equalities hold,
returns 1 for accepting.

Otherwise,
returns 0 for rejecting.
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Completeness. In an honest execution, one has

α · comPed +Rx = α · ([u>] · s+ [x]) + ([u>] · r + [rx])

= [u>] · (s · α+ r) + [x · α+ rx]

= [u>] · t+ [tx],

α · comek,1 +R = α · ([v>] · s) + [v>] · r
= [v>] · (s · α+ r)

= [v>] · t,
α · comek,2 +R′ = α · ([v′>] · s) + [v′>] · r

= [v′>] · (s · α+ r)

= [v′>] · t

Then V(comPed, comek) = 1 with probability 1.

Soundness. Assume that (R,R′, Rx, α1, t1, tx,1) and (R,R′, Rx, α2, t2, tx,2) are two accepting tran-
scripts such that α1 6= α2. Then one has{

α1 · comek,1 +R = [v>] · t1
α2 · comek,1 +R = [v>] · t2,{
α1 · comek,2 +R′ = [v′>] · t1
α2 · comek,2 +R′ = [v′>] · t2,{
α1 · comPed +Rx = [u>] · t1 + [tx,1]

α2 · comPed +Rx = [u>] · t2 + [tx,2]

which respectively implies that

comek,1 = [v>] · ((α1 − α2)
−1 · (t1 − t2)),

comek,2 = [v′>] · ((α1 − α2)
−1 · (t1 − t2)),

comPed = [u>] · ((α1 − α2)
−1 · (t1 − t2)) + (α1 − α2)

−1 · [tx,1 − tx,2].

Then, s = (α1−α2)
−1·(t1−t2) and x = (α1−α2)

−1·[tx,1−tx,2] is a valid witness. Therefore, there exists
a PPT extractor E that takes two valid transcripts (R,R′, Rx, α1, t1, tx,1) and (R,R′, Rx, α2, t2, tx,2)
and produces a valid witness (s, x) in polynomial time.

Zero-Knowledge. On input a challenge α and a statement (comPed, comek), a simulator S runs as
follows:

– Choose t0 $←− Z2
p and t0x

$←− Zp.
– Computes R0

x ←− [u>] · t0 + [t0x]− α · comPed.
– Computes R0 ←− [v>] · t0 − α · comek,1.
– Computes R′0 ←− [v′>] · t0 − α · comek,2.
– Outputs the transcript (R0

x, R
0, R′0, α, t0, t0x).

On the other hand, an accepting transcript from an honest execution (R,R′, Rx, α, t, tx) has t
uniformly chosen from Z2

p and tx uniformly chosen from Zp. In both transcripts, (R,R′, Rx) and
(R0, R′0, R0

x) are determined by (t, tx) and (t0, t0x) respectively. Then the distributions of two tran-
scripts are the same.

To transform the above schemes into non-interactive mode, one can apply the Fiat-Shamir heuris-
tic.
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B.2 Combination between Range Proof and Σ-protocol

Lemma 1. On public parameters ([u], ([u>`MCFE,b
])b∈[2]), for any input ([c], comek, l, r), the composition

of NIZKrange on the statement ([c], l, r) and NIZKkey on the statement ([c], comek), which is denoted by
NIZKEncrypt, is a zero-knowledge argument for the language LEncrypt, defined by the relation REncrypt,
on the statement ([c], comek, l, r).

Proof. We note that a transcript of NIZKEncrypt is accepting if and only if it consists of an accepting
transcript for NIZKrange and an accepting transcript for NIZKkey.

– Completeness: The completeness comes from the completeness of NIZKkey and NIZKrange.
– Soundness: A knowledge extractor KPEncrypt for P is constructed as follows:

1. It takes as input ([c], comek, l, r).
2. As both NIZKrange and NIZKkey have knowledge extractors, it calls the extractor KPrange on

input ([c], l, r) and the extractor KPkey on input ([c], comek).
3. When KPrange([c], l, r) = (s, x) and KPSchnorr([c], l, r) = (s′, x′), it outputs (s, x).
Note that s = s′ since comek is perfectly binding. Then we have x = x′.
Therefore, (s, x) = (s′, x′) is a valid witness for the relation REncrypt. This implies that ([c], comek,
l, r) ∈ LEncrypt. On the other hand, since KPrange and KPSchnorr are PPT algorithms, then KPEncrypt
runs in polynomial time. The existence of a knowledge extractor KPEncrypt implies the soundness
of the protocol.

– Zero-Knowledge: Since NIZKrange and NIZKkey are both zero-knowledge, so they have Srange and
Skey as simulators respectively. The simulator SEncrypt can output the concatenation (Srange([c], l, r),
Skey([c], comek)) as the simulated transcript. This simulated transcript is then indistinguishable
from the transcript of an honest execution. Srange and Skey run in polynomial time, so SEncrypt also
runs in polynomial time.

B.3 Correctness and Security Analysis of the LDSUM scheme

Correctness. Given pp ← SetUp(λ),
(
(ski)i∈[n], pk

)
← KeyGen(), and C`,i ← Encrypt(ski, xi, `) for

i ∈ [n]. By the correctness of ODSUM, we have

dk1 =
∑
i∈[n]

si ∈ Z2
p.

Then we have

[α] =
∑
i

[ci]− [u>` ] · dk1 =
∑
i

[u>` si + xi]− [u>` ·
∑
i∈[n]

si] = [
∑
i

xi].

Given the condition that
∑
i xi is sufficiently small, then α can be found efficiently.

Theorem 4. The LDSUM scheme described in Section 5.2 is sta-IND-secure (see Definition 7) under
the DDH and HSM assumptions, in the random oracle model. More precisely, we have

Advsta−indLDSUM(t, qE) ≤ AdvindODSUM(t) + AdvindMCFE(t, qE).

where

– Advsta−indLDSUM(t, qE) is the best advantage of any PPT adversary running in time t with qE encryption
queries against the sta−IND security game of the LDSUM scheme;

– AdvindODSUM(t) is the best advantage of any PPT adversary running in time t against the IND-
security game of the ODSUM scheme;

– AdvindMCFE(t, qE) is the best advantage of any PPT adversary running in time t with qE encryption
queries against the IND-security game of the MCFE scheme [CDG+18].

Proof. We proceed by using a hybrid argument. Let A be a PPT adversary running in time t with
qE encryption queries. For any game G, we write AdvG the advantage of A in the game G.

Game G0: this is the sta− IND security game as given in Definition 7, with the set CS of corrupted
senders known from the beginning. Let HS be the set of non-corrupted senders.
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Game G1: this game is as G0, except for the KeyGen process in the initialization phase:
– if i is the last non-corrupted index, then the challenger computes

dki,b = ODSUM.Encrypt(si,b +
∑
j∈HS,j 6=i sj,b ,ODSUM.pkb, ti,b)

for b ∈ [2];
– for other non-corrupted index i, the challenger computes

dki,b = ODSUM.Encrypt( 0 ,ODSUM.pkb, ti,b)

for b ∈ [2];
and answers dki = (dki,1, dki,2). By the (static) IND-security of the ODSUM scheme, we have

|AdvG0 − AdvG1 | ≤ AdvindODSUM(t).

We now reduce the IND-security of the MCFE scheme in [CDG+18] to the game in G1. We
construct an adversary BMCFE against the security of the MCFE scheme as in Figure 3.
From the reduction, AdvG1

≤ AdvindMCFE(t, qE). To complete the proof, we have

AdvG0
≤ AdvindODSUM(t) + AdvindMCFE(t, qE).

B.4 Σ-protocol in class groups for VerifyDK

Theorem 5. The protocol NIZKDKeyGenShare, as defined in Figure 2, is a zero-knowledge argument for
the relation RDKeyGenShare. More specifically, this protocol has perfect completeness, statistically zero-
knowledge, and a computational soundness under the Strong Root Assumption and the p-Low Order
Assumption.

Proof. We prove the completeness, the soundness and the zero-knowledge property in the interactive
mode.

Completeness. In an honest execution, one has

TαODSUM,i ·RODSUM,i = (g
αtODSUM,i,b
p · gρODSUM,i,b

p )b∈[2]

= (g
zODSUM,i,b
p )b∈[2]

α · dki +Rdki = ([u>`y,bαsLDSUM,i + αsDMCFE,i,b · yi]2
+ [u>`y,bρLDSUM,i + ρDMCFE,i,b · yi]2)b∈[2]

= ([u>`y,bzLDSUM,i + zDMCFE,i,b · yi]2)b∈[2]
α · comDMCFE,i +RDMCFE,i = ([v>DMCFE,b · αsDMCFE,i]1 + [v>DMCFE,b · ρDMCFE,i]1)b∈[2]

= ([v>DMCFE,b · zDMCFE,i]2)b∈[2]

α · dkLDSUM,i +RdkLDSUM,i
= (fαsLDSUM,i,bK

αtODSUM,i,b

Σ,i · fρLDSUM,i,bK
ρODSUM,i,b

Σ,i )b∈[2]

= (fzLDSUM,i,bK
zODSUM,i,b

Σ,i )b∈[2]

Then V accepts with probability 1.

Soundness. Given two accepting transcripts

(RODSUM,i, Rdki , RDMCFE,i, RdkLDSUM,i
, α, zODSUM,i, zLDSUM,i, zDMCFE,i);

(RODSUM,i, Rdki , RDMCFE,i, RdkLDSUM,i
, α′, z′ODSUM,i, z

′
LDSUM,i, z

′
DMCFE,i)

with α 6= α′, by putting δα := α − α′, one can obtain the witness sDMCFE,i and sLDSUM,i as in a
Schnorr’s protocol over a standard DDH group:

sDMCFE,i = δ−1α (zDMCFE,i − z′DMCFE,i) ∈ Z2
p; sLDSUM,i = δ−1α (zLDSUM,i − z′LDSUM,i) ∈ Z2

p



Verifiable DMCFE for Inner Product 29

Reduction from IND−MCFE to G1:
BMCFE calls A and plays as the challenger in G1.
A sends the corruption queries to BMCFE before the initialization. BMCFE then sends
the same corruption queries to the IND-security game of MCFE.
After the output b′A ←− AQEncrypt(·,·,·),QCorrupt(·),QDKeyGen(·), BMCFE outputs b′BMCFE

←−
b′A.

Initialization:

– SetUp (λ): On receiving the MCFE public parameters MCFE.pp = (G,H),
adversary BMCFE generates ODSUM.pp = ODSUM.SetUp(λ).

– KeyGen (): BMCFE generates (ti,b, Ti,b,ODSUM.pkb) ←− ODSUM.KeyGen() for
b ∈ [2]. The generation of key shares for the sum is as follows
• If i is the last non-corrupted index, BMCFE first sends a key query for

the sum, namely MCFE.QDKeyGen(1), to obtain dk1 := (
∑
j∈CS sj,b +∑

j∈HS sj,b)b∈[2] ∈ Z2
p. Then BMCFE obtains sj ←− MCFE.QCorrupt(j) for

all j ∈ CS and computes

dki,b = ODSUM.Encrypt(dk1,b −
∑
j∈CS

sj,b,ODSUM.pkb, ti,b)

for b ∈ [2];
• For other non-corrupted index i, the challenger computes

dki,b = ODSUM.Encrypt(0,ODSUM.pkb, ti,b)

for b ∈ [2];
• If i is a corrupted index, the challenger computes

dki,b = ODSUM.Encrypt(si,b,ODSUM.pkb, ti,b)

for b ∈ [2].

Returns pp = (MCFE.pp,ODSUM.pp) and pk = ((ODSUM.pkb)b∈[2], (dki)i∈[n]).

QEncrypt(i, x0i , x
1
i , `):

Returns C`,i ←− MCFE.QEncrypt(i, x0i , x
1
i , `)

QCorrupt(i):
si ←− MCFE.QCorrupt(i)
Returns (si, ti,1, ti,2).

Fig. 3. Reduction for the proof of Theorem 4. A is the adversary in game G1, while BMCFE is the adversary
in the IND-security game for the MCFE scheme in [CDG+18].
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The extracted value sDMCFE,i is the opening to the commitment comDMCFE,i. In addition, sDMCFE,i

and sLDSUM,i are witness for the functional key share dki.
For the public input in class group G, it suffices to prove that with an overwhelming probability, there
exists a witness tODSUM,i satisfying the relations in RDKeyGenShare. From the accepting transcripts, one
has the following equalities:

T δαODSUM,i = (g
zODSUM,i,b−z′ODSUM,i,b
p )b∈[2];

dkδαLDSUM,i = (fzLDSUM,i,b−z′LDSUM,i,bK
zODSUM,i,b−z′ODSUM,i,b

Σ,i )b∈[2]

Following a similar argument of extraction as in [CCL+20], we first put

δODSUM,i,b := zODSUM,i,b − z′ODSUM,i,b, δLDSUM,i,b := zLDSUM,i,b − z′LDSUM,i,b,

db = gcd(δODSUM,i,b, δα)

for b ∈ [2]. Note that db < p and db 6= 0. From the last equalities, we have

v1 := (g

δODSUM,i,b
db

p · T
− δαdb
ODSUM,i,b)b∈[2];

v2 := (fδLDSUM,i,b·d−1
b K

δODSUM,i,b
db

Σ,i dk
− δαdb
LDSUM,i,b)b∈[2]

Here we use the fraction symbol to distinguish between division in Zp and in Z. In the case v1 =
v2 = (1Ĝ, 1Ĝ) and δα

db
= 2µb for some µb ∈ N and b ∈ [2], as the verifier already checked that

TODSUM,i, dkLDSUM,i,KΣ,i ∈ Ĝ2 and the group order of Ĝ is odd, one obtain the following mathematical
fact

(g

δODSUM,i,b
db

·2−µb
p )b∈[2] = (TODSUM,i,b)b∈[2];

(fδLDSUM,i,b·δ−1
α K

δODSUM,i,b
db

·2−µb
Σ,i )b∈[2] = (dkLDSUM,i,b)b∈[2].

Therefore, the existence of a valid tODSUM,i := (
δODSUM,i,b

db
· 2−µb mod sp)b∈[2] where sp is the order of

Gp is implicitly implied in this case. The statement is correct with respect to the relationRDKeyGenShare.
For the other cases, we provide an analysis as below:

– Either v1 6= (1Ĝ, 1Ĝ) or v2 6= (1Ĝ, 1Ĝ): WLOG, we assume that v1,b 6= 1Ĝ. Since v
db
1,b = 1 and

db|δα < p. Then the extractor finds a solution (v1,b, db) to the p-Low Order Assumption in Ĝ,
which happens with a negligible probability.

– v1 = v2 = (1Ĝ, 1Ĝ) but there exists a b ∈ [2] such that δα
db
6= 2µb for all µb ∈ N: WLOG, we

assume that b = 1 in this case. One can find (u1, v1) ∈ Z2 such that u1 · δODSUM,i,1 + v1 · δα = d1.
Then one has

gd1p = g
u1·δODSUM,i,1+v1·δα
p = (Tu1

ODSUM,i · g
v1
p )δα .

We denote that h := g−1p (Tu1

ODSUM,i · gv1p )
δα
d1 , then hd1 = 1Ĝ. If h 6= 1Ĝ, then (h, d1) is a solution

to the p-Low Order Problem. If h = 1Ĝ, then (Tu1

ODSUM,i · gv1p ,
δα
d1
) is a not-power-of-2 root of gp,

and hence a solution to the Strong Root Problem with a randomized instance gp. Therefore, this
case happens with a negligible probability.

From above, we can conclude that given two accepting transcripts with two different challenges,
an extractor has an overwhelming probability of extracting valid (sDMCFE,i, sLDSUM,i) and values
(δODSUM,i, (db, µb)b∈[2]) that imply the existence of a valid tODSUM,i. This extractor can run in polyno-
mial time. Therefore, the soundness holds under the Strong Root Assumption and the p-Low Order
Assumption.

Zero-Knowledge. Given a statement that satisfies RDKeyGenShare:

(TODSUM,j,b)j∈[n],b∈[2], dkLDSUM,i, comDMCFE,i, dki,

a simulator chooses
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– a challenge α $←− Zp;
– responses zLDSUM,i, zDMCFE,i

$←− Z2
p;

– a response zODSUM,i
$←− [pS, 2λpS]2;

and computes

– RODSUM,i = (T−αODSUM,i,b · g
zODSUM,i,b
p )b∈[2];

– Rdki = ([u>`y,bzLDSUM,i + zDMCFE,i,b · yi]2 − α · dki,b)b∈[2];
– RDMCFE,i = ([v>DMCFE,b · zDMCFE,i]1 − α · comDMCFE,i,b)b∈[2];
– RdkLDSUM,i

= (fzLDSUM,i,bK
zODSUM,i,b

Σ,i · dk−αLDSUM,i,b)b∈[2]
where KΣ,i =

∏
i<j TODSUM,j,b · (

∏
i>j TODSUM,j,b)

−1 ∈ G.

and outputs (RODSUM,i, Rdki , RDMCFE,i, RdkLDSUM,i
, α, zODSUM,i, zLDSUM,i, zDMCFE,i) as the simulated tran-

script. For the part in standard DDH group, namely
(Rdki , RDMCFE,i, zLDSUM,i, zDMCFE,i), the indistinguishability from those of an honest execution is im-
plied from the perfect zero-knowledge property of Schnorr’s protocol. On the other hand, by having
pS

2λpS
negligible in λ, then we achieve the statistical zero-knowledge for the part of transcript in

unknown order group, namely (RODSUM,i, RdkLDSUM,i
, zODSUM,i), from Theorem 2 in [GPS06].

B.5 Theorem 3 (Security for Verifiable DMCFE)

The Range-Verifiable Decentralized MCFE for Inner Product scheme described in Section 5.3 is
sta− IND-secure under the SXDH and HSM assumptions, as in Definition 9. More precisely, we
have

Advsta−indDMCFE(t, qE) ≤ qKAdvzkNIZKDKeyGenShare
(t) + qEAdv

zk
NIZKEncrypt

(t)

+ Advsta−indLDSUM(t, qK) + Advsta−indMCFE (t, qE + 2n).

where

– Advsta−indDMCFE(t, qE , qK) is the best advantage of any PPT adversary running in time t with qE en-
cryption queries and qK key share queries against the IND-security game of the verifiable DMCFE
scheme;

– AdvzkNIZKDKeyGenShare
(t) is the best advantage of any PPT adversary running in time t against the

zero-knowledge property of the NIZKDKeyGenShare scheme;
– AdvzkNIZKEncrypt

(t) is the best advantage of any PPT adversary running in time t against the zero-
knowledge property of the NIZKEncrypt scheme;

– Advsta−indLDSUM(t, qK) is the best advantage of any PPT adversary running in time t with qK encryption
queries against the IND-security game of the LDSUM scheme.

– Advsta−indMCFE (t, qE +2n) is the best advantage of any PPT adversary running in time t with qE +2n
encryption queries against the IND-security game of the MCFE scheme in [CDG+18].

Proof. We proceed by using a hybrid argument. Let A be a PPT adversary running in time t with
qE encryption queries. For any game G, we write AdvG the advantage of A in the game G.

Game G0: this is the sta-IND-security game as given in Definition 9, with the set CS of corrupted
senders known from the beginning.

Game G1: this game is as G0, except that for generating proofs:
– πDKeyGenShare,i is produced by a simulator SimDKeyGenShare on the input (LDSUM.pk, comDMCFE,i,

dki, `y) if i is queried in QDKeyGen(i,y) such that yi ∈ [2m − 1] for all i ∈ [n].
– πEncrypt,i is produced by a simulator SimEncrypt on the input (`, [c`,i]1, comDMCFE,i,m) if i is

queried in QEncrypt(i, x0, x1, `) for x0, x1 ∈ [0, 2m − 1].
Given qE encryption queries and qK functional key share queries, by the zero-knowledge property
of NIZK proofs, we have

|AdvG0 − AdvG1 | ≤ qKAdvzkNIZKDKeyGenShare
(t) + qEAdv

zk
NIZKEncrypt

(t).
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Game G2: this game is as G1, except for functional key share queries QDKeyGen (i, y):
– if i is the last non-corrupted index, the challenger computes

dki = (LDSUM.Encrypt(LDSUM.eki, sDMCFE,i,b +
∑
j∈HS,j 6=i sDMCFE,j,byj , `y,b))b∈[2;

– for other non-corrupted index i, the challenger computes

dki = (LDSUM.Encrypt(LDSUM.eki, 0 , `y,b))n∈[2];

Given qK key share queries, by the (static) IND-security of the LDSUM scheme, we have

|AdvG2
− AdvG1

| ≤ Advsta−indLDSUM(t, qK).

We now reduce the IND-security of the MCFE scheme in [CDG+18] to the game in G2. We
construct an adversary BMCFE against the security of the MCFE scheme as in Figure 4. From the
reduction,

AdvG2(A) ≤ Advsta−indMCFE (t, qE + 2n).

To complete the proof, we have

AdvG0
≤ qKAdvzkNIZKDKeyGenShare

(t) + qEAdv
zk
NIZKEncrypt

(t)

+ Advsta−indLDSUM(t, qK) + Advsta−indMCFE (t, qE + 2n).

C Privacy Improvement with AoNE

Using a AoNE layer on the DMCFE ciphertexts, we can remove the condition 2 in the security model
in Definition 9. We recall the pairing-based AoNE construction in [CDSG+20].

– AoNE.SetUp(λ): Generates a pairing group PG = (G1,G2,GT , p, P1, P2, e)
$←− PGGen(1λ), a

full domain hash function H from {0, 1}∗ onto G1, a symmetric encryption scheme SKE =
(SEnc,SDec), and outputs pp = (PG,H,SKE). We denote by [hx] the hash value of H on any
message x, and pp is implicit input to other algorithms.

– AoNE.KeyGen(): Samples ti
$←− Zp and outputs (pki, ski) = ([ti]2, ti).

– AoNE.Encrypt(ski,m): Parses ski = ti and m = (xi, `). Samples ri
$←− Zp and computes the

symmetric key Ki,` as

e

H(`), ri ·
∑
i∈[n]

pki

 =

h` · ri ·∑
i∈[n]

ti


T

,

and uses it to encrypt xi as ci = SEnc(Ki,`, xi). Computes its share Si,` = ti · H(`) = [ti · h`]1,
and outputs the ciphertext cti = (ci, [ri]2, Si,`, `).

– AoNE.Decrypt((cti)i∈[n]): Parses the ciphertexts as cti = (ci, [ri]2, Si,`, `) for all i ∈ [n]. For each
i ∈ [n], computes

Ki,` = e

∑
i∈[n]

Si,`, [ri]2

 =

h` · ri ·∑
i∈[n]

ti


T

and recovers xi as xi = SDec(Ki,`, ci).

The ciphertext verification will consist of two steps when a AoNE layer is added on the DMCFE
ciphertexts:

– AoNE share validation: each sender sends additionally with his encapsulation a Σ-proof πi,AoNE,
which proves a DDH relation

RAoNE(Si,`, pki; t) = 1←→ Si,` = t · H(`) ∧ pki = [t]2.

When all πi,AoNE for i ∈ [n] are valid, the receiver decrypts encapsulations by running Decrypt((cti)i∈[n])
and continues. Otherwise, returns 0.
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Reduction from IND−MCFE to G2:
BMCFE calls A and plays as the challenger in G2.
A sends the corruption queries to BMCFE before the initialization. BMCFE then sends
the same corruption queries to the IND-security game of MCFE.
After the output b′A ←− AQEncrypt(·,·,·),QCorrupt(·),QDKeyGen(·), BMCFE outputs b′BMCFE

←−
b′A.
Initialization:

– SetUp (λ): On receiving the MCFE public parameters MCFE.pp in G1, adver-
sary BMCFE generates

pp = (PG, (Hb)b∈[2], LDSUM.SetUp(λ,G2), `LDSUM, `DMCFE).

– KeyGen (): BMCFE generates (LDSUM.ski)i∈[n] and LDSUM.pk. For all i ∈ [n],
it generates comDMCFE,i ←− (MCFE.QEncrypt(i, 0, 0, `DMCFE,b))b∈[2];

Returns pp, vkDK = (LDSUM.pk, (comDMCFE,i)i∈[n]), vkCT = (comDMCFE,i)i∈[n] and
pk = LDSUM.pk.
QEncrypt(i, x0i , x

1
i , `):

[c`,i]1 ←− MCFE.QEncrypt(i, x0i , x
1
i , `).

BMCFE calls SimEncrypt(`, [c`,i]1, comDMCFE,i,m) to simulate πEncrypt,i.
Returns C`,i = (`, [c`,i]1, πEncrypt,i).
QCorrupt(i):
sDMCFE,i ←− MCFE.QCorrupt(i)
Returns ski = (sDMCFE,i, LDSUM.ski).
QDKeyGen(i,y) :

– If i is the last non-corrupted index, BMCFE first sends a key
query MCFE.QDKeyGen(y) to obtain dky ∈ Z2

p. Note that dky =
(
∑
j∈CS sDMCFE,j,byj +

∑
j∈HS sDMCFE,j,byj)b∈[2]. Then BMCFE computes

dki = (LDSUM.Encrypt(LDSUM.eki, dky,b −
∑
j∈CS

sDMCFE,j,byj , `y,b))b∈[2].

– For other non-corrupted index i, the challenger computes

dki = (LDSUM.Encrypt(LDSUM.eki, 0, `y,b))b∈[2.

– If i is a corrupted index, then the challenger computes

dki = (LDSUM.Encrypt(LDSUM.eki, sDMCFE,j,byj , `y,b)b∈[2].

BMCFE calls SimDKeyGenShare(LDSUM.pk, comDMCFE,i, dki, `y) to simulate
πDKeyGenShare,i.
Returns dki,y = (dki, `y, πDKeyGenShare,i).

Fig. 4. Reduction for the proof of Theorem 3. Here we leverage the MCFE encryption of 0 under a specific
label `DMCFE to obtain a commitment of private encryption keys in the KeyGen () of the initilization phase.
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– DMCFE ciphertext verification: each xi decrypted from AoNE is parsed as an DMCFE ciphertext
under the label `, namely xi = [c`,i]. The receiver then verifies C`,i = (`, [c`,i], πEncrypt,i).

In this AoNE scheme, each share Si,` is used as global input to reveal the symmetric key Kj,` for
all j ∈ [n], while [ri]2 is used for Ki,` only. Therefore, the first step is to identify malicious senders who
want to distort the symmetric key of other honest senders. The second step is to identify malicious
senders who give maliciously generated DMCFE ciphertexts.

In terms of the IND-security, the Σ-proof for RAoNE can be simulated by a zero-knowledge simu-
lator. Therefore, the IND-security of the verifiable DMCFE scheme with the two-step verification (as
described above) can be reduced to that of the DMCFE scheme with a layer of AoNE encapsulation
on the ciphertexts.
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