Skip to main content

Cuckoo Commitments: Registration-Based Encryption and Key-Value Map Commitments for Large Spaces

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

Registration-Based Encryption (RBE) [Garg et al. TCC’18] is a public-key encryption mechanism in which users generate their own public and secret keys, and register their public keys with a central authority called the key curator. Similarly to Identity-Based Encryption (IBE), in RBE users can encrypt by only knowing the public parameters and the public identity of the recipient. Unlike IBE, though, RBE does not suffer the key escrow problem—one of the main obstacles of IBE’s adoption in practice—since the key curator holds no secret.

In this work, we put forward a new methodology to construct RBE schemes that support large users identities (i.e., arbitrary strings). Our main result is the first efficient pairing-based RBE for large identities. Prior to our work, the most efficient RBE is that of [Glaeser et al. ePrint’22] which only supports small identities. The only known RBE schemes with large identities are realized either through expensive non-black-box techniques (ciphertexts of 3.6 TB for 1000 users), via a specialized lattice-based construction [Döttling et al. Eurocrypt’23] (ciphertexts of 2.4 GB), or through the more complex notion of Registered Attribute-Based Encryption [Hohenberger et al. Eurocrypt’23]. By unlocking the use of pairings for RBE with large identity space, we enable a further improvement of three orders of magnitude, as our ciphertexts for a system with 1000 users are 1.7 MB.

The core technique of our approach is a novel use of cuckoo hashing in cryptography that can be of independent interest. We give two main applications. The first one is the aforementioned RBE methodology, where we use cuckoo hashing to compile an RBE with small identities into one for large identities. The second one is a way to convert any vector commitment scheme into a key-value map commitment. For instance, this leads to the first algebraic pairing-based key-value map commitments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Informally, a CH is robust if its correctness error is negligible for adversarially chosen inputs; standard correctness holds only for inputs chosen before public parameters.

  2. 2.

    One can also use polynomial commitments, e.g., [42], in combination with interpolation but to the best of our knowledge this KVC is not updatable.

  3. 3.

    We note that if \(\boldsymbol{T}[\textsf{id}^{(\eta )}] \ne \textsf{id}\) then from position-binding of the VC no PPT party can compute a \(\varPsi \) that verifies for \(\textsf{id}\) in position \(\textsf{id}^{(\eta )}\).

  4. 4.

    The update information does not have to be secret and is only computed by KC and not by the user for efficiency.

  5. 5.

    We consider the identity space \(\{0,1\}^{2 \lambda }\) virtually unbounded since one can always use a collision-resistant hash function \(H: \{0, 1\}^{*} \rightarrow \{0, 1\}^{2 \lambda }\) to support unbounded identities.

  6. 6.

    In case the VC is updatable, the updated D can computed efficiently without having to recompute it from scratch. For simplicity we do not make this explicit in the construction.

  7. 7.

    The \(\log k = \log \lambda \) factor is in bits, while the rest are in cryptographic elements (e.g. Group elements or Lattice matrices) therefore \(\log \lambda \) bits correspond to one element.

  8. 8.

    In [24] \(\mathcal{I}\mathcal{D}\) can be arbitrarily large. We make use of the scheme with small identities to argue that compiling it to a large \(\mathcal{I}\mathcal{D}\) with our transformation instead can benefit efficiency.

  9. 9.

    In theory, this is integrated in the trusted setup of the CRS generation. In practice, though, this type of CRS is highly undesirable, since no efficient MPC ceremony to generate it is currently known, in contrast to the ’powers-of-tau’ CRS.

References

  1. Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_28

    Chapter  Google Scholar 

  2. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and amortized query processing. In: 2018 IEEE Symposium on Security and Privacy, pp. 962–979. IEEE Computer Society Press, May 2018. https://doi.org/10.1109/SP.2018.00062

  3. Aumüller, M., Dietzfelbinger, M., Woelfel, P.: Explicit and efficient hash families suffice for cuckoo hashing with a stash. Algorithmica 70(3), 428–456 (2014)

    Article  MathSciNet  Google Scholar 

  4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33

    Chapter  Google Scholar 

  5. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

    Chapter  Google Scholar 

  6. Benhamouda, F., Lin, H.: Mr NISC: multiparty reusable non-interactive secure computation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 349–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_13

    Chapter  Google Scholar 

  7. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20

    Chapter  Google Scholar 

  8. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16

    Chapter  Google Scholar 

  9. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27

    Chapter  Google Scholar 

  10. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    Chapter  Google Scholar 

  11. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryption to the future - a paradigm for sending secret messages to future (anonymous) committees. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp. 151–180. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22969-5_6

    Chapter  Google Scholar 

  12. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally aggregatable vector commitments and applications to verifiable decentralized storage. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_1

    Chapter  Google Scholar 

  13. Campanelli, M., Fiore, D., Khoshakhlagh, H.: Witness encryption for succinct functional commitments and applications. Cryptology ePrint Archive, Report 2022/1510 (2022). https://eprint.iacr.org/2022/1510

  14. de Castro, L., Peikert, C.: Functional commitments for all functions, with transparent setup and from SIS. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 287–320. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30620-4_10

    Chapter  Google Scholar 

  15. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  16. Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433–450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_25

    Chapter  Google Scholar 

  17. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_2

    Chapter  Google Scholar 

  18. Cong, K., Eldefrawy, K., Smart, N.P.: Optimizing registration based encryption. In: Paterson, M.B. (ed.) IMACC 2021. LNCS, vol. 13129, pp. 129–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0_7

    Chapter  Google Scholar 

  19. Datta, P., Pal, T.: Registration-based functional encryption. Cryptology ePrint Archive (2023)

    Google Scholar 

  20. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly packed constant size bins. Theoret. Comput. Sci. 380(1–2), 47–68 (2007)

    Article  MathSciNet  Google Scholar 

  21. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

    Article  MathSciNet  Google Scholar 

  22. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

    Chapter  Google Scholar 

  23. Döttling, N., Hanzlik, L., Magri, B., Wohnig, S.: McFly: verifiable encryption to the future made practical. Cryptology ePrint Archive, Report 2022/433 (2022). https://eprint.iacr.org/2022/433

  24. Döttling, N., Kolonelos, D., Lai, R.W.F., Lin, C., Malavolta, G., Rahimi, A.: Efficient laconic cryptography from learning with errors. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 417–446. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30620-4_14

    Chapter  Google Scholar 

  25. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  26. Fiore, D., Kolonelos, D., de Perthuis, P.: Cuckoo commitments: registration-based encryption and key-value map commitments for large spaces. Cryptology ePrint Archive, Paper 2023/1389 (2023). https://eprint.iacr.org/2023/1389

  27. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with worst case constant access time. Theory Comput. Syst. 38, 229–248 (2003)

    Article  MathSciNet  Google Scholar 

  28. Fountoulakis, N., Panagiotou, K., Steger, A.: On the insertion time of cuckoo hashing (2013)

    Google Scholar 

  29. Francati, D., Friolo, D., Maitra, M., Malavolta, G., Rahimi, A., Venturi, D.: Registered (inner-product) functional encryption. Cryptology ePrint Archive (2023)

    Google Scholar 

  30. Frieze, A.M., Johansson, T.: On the insertion time of random walk cuckoo hashing. CoRR abs/1602.04652 (2016). http://arxiv.org/abs/1602.04652

  31. Frieze, A.M., Melsted, P., Mitzenmacher, M.: An analysis of random-walk cuckoo hashing. In: International Workshop and International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (2009)

    Google Scholar 

  32. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013. https://doi.org/10.1109/FOCS.2013.13

  33. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488667

  34. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryption: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_25

    Chapter  Google Scholar 

  35. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_3

    Chapter  Google Scholar 

  36. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_24

    Chapter  Google Scholar 

  37. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008. https://doi.org/10.1145/1374376.1374407

  38. Glaeser, N., Kolonelos, D., Malavolta, G., Rahimi, A.: Efficient registration-based encryption. In: Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. ACM Press, November 2023. https://doi.org/10.1145/3576915.3616596

  39. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 621–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_21

    Chapter  Google Scholar 

  40. Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based encryption. In: EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 511–542. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_17

    Chapter  Google Scholar 

  41. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Khuller, S., Williams, V.V. (eds.) 53rd ACM STOC, pp. 60–73. ACM Press, June 2021. https://doi.org/10.1145/3406325.3451093

  42. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  43. Khosla, M.: Balls into bins made faster. In: Embedded Systems and Applications (2013)

    Google Scholar 

  44. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing with a stash. SIAM J. Comput. 39(4), 1543–1561 (2010)

    Article  MathSciNet  Google Scholar 

  45. Kuszmaul, J.: Verkle trees: V(ery short m)erkle trees (2018). https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf

  46. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_17

    Chapter  Google Scholar 

  47. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1

    Chapter  Google Scholar 

  48. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_30

    Chapter  Google Scholar 

  49. Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_14

    Chapter  Google Scholar 

  50. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_19

    Chapter  Google Scholar 

  51. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)

    Article  MathSciNet  Google Scholar 

  52. Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure cloud-hosted data structures: Volume-hiding for multi-maps via hashing. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 79–93. ACM Press, November 2019. https://doi.org/10.1145/3319535.3354213

  53. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_27

    Chapter  Google Scholar 

  54. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: Jung, J., Holz, T. (eds.) USENIX Security 2015. pp. 515–530. USENIX Association, August 2015

    Google Scholar 

  55. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005. https://doi.org/10.1145/1060590.1060603

  56. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342

    Article  MathSciNet  Google Scholar 

  57. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (Aug (1984)

    Google Scholar 

  58. Tsabary, R.: Candidate witness encryption from lattice techniques. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 535–559. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_19

    Chapter  Google Scholar 

  59. Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-IO from evasive LWE. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part I. LNCS, vol. 13791, pp. 195–221. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22963-3_7

    Chapter  Google Scholar 

  60. Walzer, S.: Insertion time of random walk cuckoo hashing below the peeling threshold (2022)

    Google Scholar 

  61. Wieder, U., et al.: Hashing, load balancing and multiple choice. Found. Trends® Theor. Comput. Sci. 12(3–4), 275–379 (2017)

    Google Scholar 

  62. Yeo, K.: Cuckoo hashing in cryptography: Optimal parameters, robustness and applications. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14084, pp. 197–230. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38551-3_7

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Kevin Yeo for helpful feedback on the robustness of Cuckoo Hashing. The first two authors received funding from projects from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant agreement No. 101001283), from the Spanish Government under projects PRODIGY (TED2021-132464B-I00) and ESPADA (PID2022-142290OB-I00). The last two projects are co-funded by European Union EIE, and NextGenerationEU/PRTR funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola de Perthuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiore, D., Kolonelos, D., Perthuis, P.d. (2023). Cuckoo Commitments: Registration-Based Encryption and Key-Value Map Commitments for Large Spaces. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14442. Springer, Singapore. https://doi.org/10.1007/978-981-99-8733-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8733-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8732-0

  • Online ISBN: 978-981-99-8733-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics