Abstract
Registration-Based Encryption (RBE) [Garg et al. TCC’18] is a public-key encryption mechanism in which users generate their own public and secret keys, and register their public keys with a central authority called the key curator. Similarly to Identity-Based Encryption (IBE), in RBE users can encrypt by only knowing the public parameters and the public identity of the recipient. Unlike IBE, though, RBE does not suffer the key escrow problem—one of the main obstacles of IBE’s adoption in practice—since the key curator holds no secret.
In this work, we put forward a new methodology to construct RBE schemes that support large users identities (i.e., arbitrary strings). Our main result is the first efficient pairing-based RBE for large identities. Prior to our work, the most efficient RBE is that of [Glaeser et al. ePrint’22] which only supports small identities. The only known RBE schemes with large identities are realized either through expensive non-black-box techniques (ciphertexts of 3.6 TB for 1000 users), via a specialized lattice-based construction [Döttling et al. Eurocrypt’23] (ciphertexts of 2.4 GB), or through the more complex notion of Registered Attribute-Based Encryption [Hohenberger et al. Eurocrypt’23]. By unlocking the use of pairings for RBE with large identity space, we enable a further improvement of three orders of magnitude, as our ciphertexts for a system with 1000 users are 1.7 MB.
The core technique of our approach is a novel use of cuckoo hashing in cryptography that can be of independent interest. We give two main applications. The first one is the aforementioned RBE methodology, where we use cuckoo hashing to compile an RBE with small identities into one for large identities. The second one is a way to convert any vector commitment scheme into a key-value map commitment. For instance, this leads to the first algebraic pairing-based key-value map commitments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Informally, a CH is robust if its correctness error is negligible for adversarially chosen inputs; standard correctness holds only for inputs chosen before public parameters.
- 2.
One can also use polynomial commitments, e.g., [42], in combination with interpolation but to the best of our knowledge this KVC is not updatable.
- 3.
We note that if \(\boldsymbol{T}[\textsf{id}^{(\eta )}] \ne \textsf{id}\) then from position-binding of the VC no PPT party can compute a \(\varPsi \) that verifies for \(\textsf{id}\) in position \(\textsf{id}^{(\eta )}\).
- 4.
The update information does not have to be secret and is only computed by KC and not by the user for efficiency.
- 5.
We consider the identity space \(\{0,1\}^{2 \lambda }\) virtually unbounded since one can always use a collision-resistant hash function \(H: \{0, 1\}^{*} \rightarrow \{0, 1\}^{2 \lambda }\) to support unbounded identities.
- 6.
In case the VC is updatable, the updated D can computed efficiently without having to recompute it from scratch. For simplicity we do not make this explicit in the construction.
- 7.
The \(\log k = \log \lambda \) factor is in bits, while the rest are in cryptographic elements (e.g. Group elements or Lattice matrices) therefore \(\log \lambda \) bits correspond to one element.
- 8.
In [24] \(\mathcal{I}\mathcal{D}\) can be arbitrarily large. We make use of the scheme with small identities to argue that compiling it to a large \(\mathcal{I}\mathcal{D}\) with our transformation instead can benefit efficiency.
- 9.
In theory, this is integrated in the trusted setup of the CRS generation. In practice, though, this type of CRS is highly undesirable, since no efficient MPC ceremony to generate it is currently known, in contrast to the ’powers-of-tau’ CRS.
References
Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_28
Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and amortized query processing. In: 2018 IEEE Symposium on Security and Privacy, pp. 962–979. IEEE Computer Society Press, May 2018. https://doi.org/10.1109/SP.2018.00062
Aumüller, M., Dietzfelbinger, M., Woelfel, P.: Explicit and efficient hash families suffice for cuckoo hashing with a stash. Algorithmica 70(3), 428–456 (2014)
Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33
Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24
Benhamouda, F., Lin, H.: Mr NISC: multiparty reusable non-interactive secure computation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 349–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_13
Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20
Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16
Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27
Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5
Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryption to the future - a paradigm for sending secret messages to future (anonymous) committees. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp. 151–180. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22969-5_6
Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally aggregatable vector commitments and applications to verifiable decentralized storage. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_1
Campanelli, M., Fiore, D., Khoshakhlagh, H.: Witness encryption for succinct functional commitments and applications. Cryptology ePrint Archive, Report 2022/1510 (2022). https://eprint.iacr.org/2022/1510
de Castro, L., Peikert, C.: Functional commitments for all functions, with transparent setup and from SIS. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 287–320. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30620-4_10
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433–450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_25
Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_2
Cong, K., Eldefrawy, K., Smart, N.P.: Optimizing registration based encryption. In: Paterson, M.B. (ed.) IMACC 2021. LNCS, vol. 13129, pp. 129–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0_7
Datta, P., Pal, T.: Registration-based functional encryption. Cryptology ePrint Archive (2023)
Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly packed constant size bins. Theoret. Comput. Sci. 380(1–2), 47–68 (2007)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638
Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18
Döttling, N., Hanzlik, L., Magri, B., Wohnig, S.: McFly: verifiable encryption to the future made practical. Cryptology ePrint Archive, Report 2022/433 (2022). https://eprint.iacr.org/2022/433
Döttling, N., Kolonelos, D., Lai, R.W.F., Lin, C., Malavolta, G., Rahimi, A.: Efficient laconic cryptography from learning with errors. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 417–446. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30620-4_14
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)
Fiore, D., Kolonelos, D., de Perthuis, P.: Cuckoo commitments: registration-based encryption and key-value map commitments for large spaces. Cryptology ePrint Archive, Paper 2023/1389 (2023). https://eprint.iacr.org/2023/1389
Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with worst case constant access time. Theory Comput. Syst. 38, 229–248 (2003)
Fountoulakis, N., Panagiotou, K., Steger, A.: On the insertion time of cuckoo hashing (2013)
Francati, D., Friolo, D., Maitra, M., Malavolta, G., Rahimi, A., Venturi, D.: Registered (inner-product) functional encryption. Cryptology ePrint Archive (2023)
Frieze, A.M., Johansson, T.: On the insertion time of random walk cuckoo hashing. CoRR abs/1602.04652 (2016). http://arxiv.org/abs/1602.04652
Frieze, A.M., Melsted, P., Mitzenmacher, M.: An analysis of random-walk cuckoo hashing. In: International Workshop and International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (2009)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013. https://doi.org/10.1109/FOCS.2013.13
Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488667
Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryption: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_25
Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_3
Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_24
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008. https://doi.org/10.1145/1374376.1374407
Glaeser, N., Kolonelos, D., Malavolta, G., Rahimi, A.: Efficient registration-based encryption. In: Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. ACM Press, November 2023. https://doi.org/10.1145/3576915.3616596
Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 621–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_21
Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based encryption. In: EUROCRYPT 2023, Part III. LNCS, vol. 14006, pp. 511–542. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_17
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Khuller, S., Williams, V.V. (eds.) 53rd ACM STOC, pp. 60–73. ACM Press, June 2021. https://doi.org/10.1145/3406325.3451093
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Khosla, M.: Balls into bins made faster. In: Embedded Systems and Applications (2013)
Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing with a stash. SIAM J. Comput. 39(4), 1543–1561 (2010)
Kuszmaul, J.: Verkle trees: V(ery short m)erkle trees (2018). https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_17
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1
Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_30
Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_14
Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_19
Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure cloud-hosted data structures: Volume-hiding for multi-maps via hashing. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 79–93. ACM Press, November 2019. https://doi.org/10.1145/3319535.3354213
Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_27
Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: Jung, J., Holz, T. (eds.) USENIX Security 2015. pp. 515–530. USENIX Association, August 2015
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005. https://doi.org/10.1145/1060590.1060603
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (Aug (1984)
Tsabary, R.: Candidate witness encryption from lattice techniques. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 535–559. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_19
Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-IO from evasive LWE. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part I. LNCS, vol. 13791, pp. 195–221. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22963-3_7
Walzer, S.: Insertion time of random walk cuckoo hashing below the peeling threshold (2022)
Wieder, U., et al.: Hashing, load balancing and multiple choice. Found. Trends® Theor. Comput. Sci. 12(3–4), 275–379 (2017)
Yeo, K.: Cuckoo hashing in cryptography: Optimal parameters, robustness and applications. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14084, pp. 197–230. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38551-3_7
Acknowledgements
We would like to thank Kevin Yeo for helpful feedback on the robustness of Cuckoo Hashing. The first two authors received funding from projects from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant agreement No. 101001283), from the Spanish Government under projects PRODIGY (TED2021-132464B-I00) and ESPADA (PID2022-142290OB-I00). The last two projects are co-funded by European Union EIE, and NextGenerationEU/PRTR funds.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Fiore, D., Kolonelos, D., Perthuis, P.d. (2023). Cuckoo Commitments: Registration-Based Encryption and Key-Value Map Commitments for Large Spaces. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14442. Springer, Singapore. https://doi.org/10.1007/978-981-99-8733-7_6
Download citation
DOI: https://doi.org/10.1007/978-981-99-8733-7_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8732-0
Online ISBN: 978-981-99-8733-7
eBook Packages: Computer ScienceComputer Science (R0)