Abstract
A functional commitment allows a user to commit to an input \(\textbf{x}\in \{0,1\}^\ell \) and later open up the commitment to a value \(y = f(\textbf{x})\) with respect to some function f. In this work, we focus on schemes that support fast verification. Specifically, after a preprocessing step that depends only on f, the verification time as well as the size of the commitment and opening should be sublinear in the input length \(\ell \), We also consider the dual setting where the user commits to the function f and later, opens up the commitment at an input \(\textbf{x}\).
In this work, we develop two (non-interactive) functional commitments that support fast verification. The first construction supports openings to constant-degree polynomials and has a shorter CRS for a broad range of settings compared to previous constructions. Our second construction is a dual functional commitment for arbitrary bounded-depth Boolean circuits that supports fast verification with security from falsifiable assumptions. Both schemes are lattice-based and avoid non-black-box use of cryptographic primitives or lattice sampling algorithms. Security of both constructions rely on the \(\ell \)-succinct short integer solutions (SIS) assumption, a falsifiable q-type generalization of the SIS assumption (Preprint 2023).
In addition, we study the challenges of extending lattice-based functional commitments to extractable functional commitments, a notion that is equivalent to succinct non-interactive arguments (when considering openings to quadratic relations). We describe a general methodology that heuristically breaks the extractability of our construction and provides evidence for the implausibility of the knowledge k-R-\(\textsf{ISIS}\) assumption of Albrecht et al. (CRYPTO 2022) that was used in several constructions of lattice-based succinct arguments. If we additionally assume hardness of the standard inhomogeneous SIS assumption, we obtain a direct attack on a variant of the extractable linear functional commitment of Albrecht et al.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In the full version of this paper, we provide the formal description and analysis of [WW23] using the \(\ell \)-succinct SIS assumption.
- 2.
In the syntax of [Wee23], the ABE ciphertext is essentially \(\textbf{s}^{\scriptscriptstyle \textsf{T}}[\textbf{A}\mid \textbf{W}_0 + (\textbf{x}\otimes \textbf{I}_n) \textbf{W}] + \textsf{error}\) and the secret key is a short Gaussian pre-image of \([\textbf{A}~|~ \textbf{B}_f]\) where \(\textbf{B}_f\) is derived from \(\textbf{B}\) via homomorphic evaluation [GSW13, BGG+14] of f on \(\textbf{B}\).
- 3.
Technically, there is a polylogarithmic dependence on \(\ell \) since \(\log q\) scales with \(\textsf{poly}(\log \ell )\).
- 4.
- 5.
Note that \(\textbf{T}\) does not (and cannot) have full rank over \(\mathbb {Z}_q\).
- 6.
The difference in target binding vs. evaluation binding is due to the soundness properties of the underlying RAM delegation scheme. We refer to [KLVW23, Remark 6.1] for more discussion on the different security definitions for RAM delegation.
- 7.
A functional commitment scheme for homogeneous polynomials implies one for non-homogeneous polynomial by padding the input with a constant-value 1. See also Remark 3.4.
- 8.
Our construction also supports the setting where \(\textbf{f}_1, \ldots , \textbf{f}_T\) have different degrees \(d_1, \ldots , d_T \le {d_{\textrm{max}}}\). For simplicity of exposition, we just describe the case where they have equal degree \(d \le {d_{\textrm{max}}}\).
- 9.
Note that \(\bar{\textbf{T}}\) does not (and cannot) have full rank over \(\mathbb {Z}_q\).
References
Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.A.: Lattice-based SNARKs: publicly verifiable, preprocessing, and recursively composable. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 102–132. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_4
Ajtai, M.. Generating hard instances of lattice problems (extended abstract). In: STOC (1996)
Albrecht, M.: Knowledge K-M-ISIS is false (2023). https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_28
Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_16
Balbás, D., Catalano, D., Fiore, D., Lai, R.W.F.: Functional commitments for circuits from falsifiable assumptions. IACR Cryptol. ePrint Arch. (2022)
Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18
Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch NP verification from standard computational assumptions. In: STOC (2017)
Boneh, D., Nguyen, W., Ozdemir, A.: How to commit to private functions. In: IACR Cryptol. ePrint Arch, Efficient Functional Commitments (2021)
Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10
Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally aggregatable vector commitments and applications to verifiable decentralized storage. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_1
Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for \(\cal{P}\) from LWE. In: FOCS (2021)
Cini, V., Lai, R.W.F., Malavolta, G.: Lattice-based succinct arguments from vanishing polynomials: (extended abstract). In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14082, pp. 72–105. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38545-2_3
de Castro, L., Peikert, C.: Functional commitments for all functions, with transparent setup and from SIS. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14006, pp. 287–320. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_10
Fisch, B., Liu, Z., Vesely, P.: Orbweaver: succinct linear functional commitments from lattices. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14082, pp. 106–131. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38545-2_4
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Aggregating proofs for multiple vector commitments. In: ACM CCS, Pointproofs (2020)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC (2013)
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25
Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC (2015)
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC (2011)
Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: CCC (2007)
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC (1992)
Kalai, Y., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch arguments and RAM delegation. In: STOC (2023)
Kalai, Y., Paneth, O.: Delegating RAM computations. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 91–118. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_4
Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: STOC (2019)
Kalai, Y.T., Vaikuntanathan, V., Zhang, R.Y.: Somewhere statistical soundness, post-quantum security, and SNARGs. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 330–368. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_12
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_19
Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class of arithmetic circuits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 686–716. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_23
Libert, B., Ramanna, S.C., Yung, M.: From polynomial commitments to pairing-based accumulators from simple assumptions. In: ICALP, Functional Commitment Schemes (2016)
Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_30
Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32
Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Nitulescu, A.: SoK: Vector Commitments (2021). https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
Parno, B., Howell, J., Gentry, C., Raykova, M: Nearly practical verifiable computation. In: IEEE Symposium on Security and Privacy, Pinocchio (2013)
Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lattices. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 480–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_16
Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_22
Tomescu, A., et al.: Aggregatable subvector commitments for stateless cryptocurrencies. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 45–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_3
Tsabary, R.: Candidate witness encryption from lattice techniques. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13507, pp. 535–559. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_19
Tomescu, A., Xia, Y., Newman, Z.: Authenticated dictionaries with cross-incremental proof (dis)aggregation. IACR Cryptol. ePrint Arch. (2020)
Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-IO from evasive LWE. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13791, pp. 195–221. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22963-3_7
Wee, H.: Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 217–241. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_8
Wee, H.: Circuit ABE with small ciphertexts and keys from lattices (2023). Manuscript
Wee, H., Wu, D.J.: Succinct vector, polynomial, and functional commitments from lattices. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14006, pp. 385–416. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_13
Waters, B., Wee, H., Wu, D.J.: Multi-authority ABE from lattices without random oracles. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, vol. 13747, pp. 651–679. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1_23
Acknowledgments
We thank Martin Albrecht for helpful discussions about the cryptanalysis of the k-R-\(\textsf{ISIS}\) assumption and Daniel Wichs for helpful insights on functional commitments and RAM delegation. David J. Wu is supported in part by NSF CNS-2151131, CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Wee, H., Wu, D.J. (2023). Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14442. Springer, Singapore. https://doi.org/10.1007/978-981-99-8733-7_7
Download citation
DOI: https://doi.org/10.1007/978-981-99-8733-7_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8732-0
Online ISBN: 978-981-99-8733-7
eBook Packages: Computer ScienceComputer Science (R0)