Abstract
In this paper, we consider to generalize NIZK by empowering a prover to share a witness in a fine-grained manner with verifiers. Roughly, the prover is able to authorize a verifier to obtain extra information of witness, i.e., besides verifying the truth of the statement, the verifier can additionally obtain certain function of the witness from the accepting proof using a secret functional key provided by the prover.
To fulfill these requirements, we introduce a new primitive called non-interactive zero-knowledge functional proofs (fNIZKs), and formalize its security notions. We provide a generic construction of fNIZK for any \({\textsf{NP}}\) relation \(\mathcal {R}\), which enables the prover to share any function of the witness with a verifier. For a widely-used relation about set membership proof (implying range proof), we construct a concrete and efficient fNIZK, through new building blocks (set membership encryption and dual inner-product encryption), which might be of independent interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A commitment scheme supports Sigma protocols, if there exists a Sigma protocol to prove the well-formedness of a commitment.
- 2.
In this scenario, the authority generates a public key and a secret key, and all users utilize the public key to generate or verify proofs. The secret functional keys are generated by the authority, using the secret key.
- 3.
For each \(x\in \mathcal {L}_{\mathcal {R}_{sm }}\), its witness is in the form of \((w,r_{\text {com} })\). In fSMP, we are only interested in functions of w (rather than \(r_{\text {com} }\)). So we define \(\mathbb {F}\) as family of functions whose domain is \(\mathcal {W}\) (rather than \(\mathcal {W}\times \mathcal{R}\mathcal{S}_{\textsf {Commit} .\textsf {Com} }\)).
- 4.
Note that the Sigma protocol \(\mathrm{\Sigma }^{\mathcal {R}''}_{clause }\) supports that the verifier can recover the commitment via the responses and the challenge, so we can save the proof size by only sending the responds to the verifier as the proof.
References
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: STOC 1988, pp. 103–112. ACM (1988)
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.6 (2023)
Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: S &P 2018, pp. 315–334. IEEE (2018)
Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_15
Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18
Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7
Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20
Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19
Chen, J., Gong, J., Wee, H.: Improved inner-product encryption with adaptive security and full attribute-hiding. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 673–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_23
Couteau, G., Klooß, M., Lin, H., Reichle, M.: Efficient range proofs with transparent setup from bounded integer commitments. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 247–277. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_9
Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. J. Cryptology 30, 242–288 (2017)
Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)
Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: a framework to Compose \(\Sigma \)-protocols for disjunctions. In: EUROCRYPT 2022, pp. 458–487. Springer (2022). https://doi.org/10.1007/978-3-031-07085-3_16
Goldwasser, S.: How to play any mental game, or a completeness theorem for protocols with an honest majority. In: STOC 1987, pp. 218–229 (1987)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4
McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for boardroom voting with maximum voter privacy. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 357–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_20
Okamoto, T.: An efficient divisible electronic cash scheme. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 438–451. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_35
Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_13
Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_35
O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive (2010)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS 1999, pp. 543–553. IEEE Computer Society (1999)
Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: S &P 2014, pp. 459–474. IEEE (2014)
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22
Tan, S.-Y., Groß, T.: MoniPoly—an expressive q-SDH-based anonymous attribute-based credential system. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 498–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_17
Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_8
Zhang, Y.: Introducing zkEVM (2022). https://scroll.io/blog/zkEVM
Acknowledgements
We would like to express our sincere appreciation to Junqing Gong for his valuable suggestions on the inner-product encryption! We also want to express our sincere appreciation to the anonymous reviewers for their valuable comments and suggestions! Gongxian Zeng and Zhengan Huang was supported by The Major Key Project of PCL (PCL2023A09). Junzuo Lai was supported by National Natural Science Foundation of China under Grant No. U2001205, Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023B1515040020), Industrial project No. TC20200930001. Jian Weng was supported by National Natural Science Foundation of China under Grant Nos. 61825203, 62332007 and U22B2028, Major Program of Guangdong Basic and Applied Research Project under Grant No. 2019B030302008, Guangdong Provincial Science and Technology Project under Grant No. 2021A0505030033, Science and Technology Major Project of Tibetan Autonomous Region of China under Grant No. XZ202201ZD0006G, National Joint Engineering Research Center of Network Security Detection and Protection Technology, Guangdong Key Laboratory of Data Security and Privacy Preserving, Guangdong Hong Kong Joint Laboratory for Data Security and Privacy Protection, and Engineering Research Center of Trustworthy AI, Ministry of Education. This research is supported by the National Research Foundation, Singapore under its Strategic Capability Research Centres Funding Initiative. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Zeng, G. et al. (2023). Non-interactive Zero-Knowledge Functional Proofs. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14442. Springer, Singapore. https://doi.org/10.1007/978-981-99-8733-7_8
Download citation
DOI: https://doi.org/10.1007/978-981-99-8733-7_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8732-0
Online ISBN: 978-981-99-8733-7
eBook Packages: Computer ScienceComputer Science (R0)