Skip to main content

Blockwise Rank Decoding Problem and LRPC Codes: Cryptosystems with Smaller Sizes

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

In this paper, we initiate the study of the Rank Decoding (RD) problem and LRPC codes with blockwise structures in rank-based cryptosystems. First, we introduce the blockwise errors (\(\ell \)-errors) where each error consists of \(\ell \) blocks of coordinates with disjoint supports, and define the blockwise RD (\(\ell \)-RD) problem as a natural generalization of the RD problem whose solutions are \(\ell \)-errors (note that the standard RD problem is actually a special \(\ell \)-RD problem with \(\ell =1\)). We adapt the typical attacks on the RD problem to the \(\ell \)-RD problem, and find that the blockwise structures do not ease the problem too much: the \(\ell \)-RD problem is still exponentially hard for appropriate choices of \(\ell >1\). Second, we introduce blockwise LRPC (\(\ell \)-LRPC) codes as generalizations of the standard LPRC codes whose parity-check matrices can be divided into \(\ell \) sub-matrices with disjoint supports, i.e., the intersection of two subspaces generated by the entries of any two sub-matrices is a null space, and investigate the decoding algorithms for \(\ell \)-errors. We find that the gain of using \(\ell \)-errors in decoding capacity outweighs the complexity loss in solving the \(\ell \)-RD problem, which makes it possible to design more efficient rank-based cryptosystems with flexible choices of parameters.

As an application, we show that the two rank-based cryptosystems submitted to the NIST PQC competition, namely, RQC and ROLLO, can be greatly improved by using the ideal variants of the \(\ell \)-RD problem and \(\ell \)-LRPC codes. Concretely, for 128-bit security, our RQC has total public key and ciphertext sizes of 2.5 KB, which is not only about 50% more compact than the original RQC, but also smaller than the NIST Round 4 code-based submissions HQC, BIKE, and Classic McEliece.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alekhnovich, M.: More on average case vs approximation complexity. In: Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS), pp. 298–307. IEEE Computer Society (2003)

    Google Scholar 

  2. Aragon, N., Blazy, O., Deneuville, J., Gaborit, P., Zémor, G.: Ouroboros: an efficient and provably secure KEM family. IEEE Trans. Inf. Theory 68(9), 6233–6244 (2022)

    Article  MathSciNet  Google Scholar 

  3. Aragon, N., Dyseryn, V., Gaborit, P., Loidreau, P., Renner, J., Wachter-Zeh, A.: LowMS: a new rank metric code-based KEM without ideal structure. IACR Cryptology ePrint Archive, p. 1596 (2022). https://eprint.iacr.org/2022/1596

  4. Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity check codes: new decoding algorithms and applications to cryptography. IEEE Trans. Inf. Theory 65(12), 7697–7717 (2019)

    Article  MathSciNet  Google Scholar 

  5. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.: A new algorithm for solving the rank syndrome decoding problem. In: International Symposium on Information Theory (ISIT), pp. 2421–2425. IEEE (2018)

    Google Scholar 

  6. Augot, D., Loidreau, P., Robert, G.: Generalized Gabidulin codes over fields of any characteristic. Des. Codes Crypt. 86(8), 1807–1848 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bardet, M., et al.: An algebraic attack on rank metric code-based cryptosystems. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 64–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_3

    Chapter  Google Scholar 

  8. Bardet, M., Briaud, P., Bros, M., Gaborit, P., Tillich, J.: Revisiting algebraic attacks on MinRank and on the rank decoding problem. IACR Cryptology ePrint Archive, p. 1031 (2022). https://eprint.iacr.org/2022/1031

  9. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_17

    Chapter  Google Scholar 

  10. Bernstein, D.J., Chou, T., Cid, C., et al.: Classic McEliece. Fourth Round Submission to the NIST Post-quantum Cryptography Call (2022). https://classic.mceliece.org/

  11. Bettaieb, S., Bidoux, L., Connan, Y., Gaborit, P., Hauteville, A.: The Learning with Rank Errors problem and an application to symmetric authentication. In: International Symposium on Information Theory, ISIT, pp. 2629–2633. IEEE (2018)

    Google Scholar 

  12. Bidoux, L., Briaud, P., Bros, M., Gaborit, P.: RQC revisited and more cryptanalysis for rank-based cryptography. CoRR (2022). https://doi.org/10.48550/arXiv.2207.01410

  13. Byrne, E., Gluesing-Luerssen, H., Ravagnani, A.: Fundamental properties of sum-rank-metric codes. IEEE Trans. Inf. Theory 67(10), 6456–6475 (2021)

    Article  MathSciNet  Google Scholar 

  14. Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding problem for rank distance codes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034862

    Chapter  Google Scholar 

  15. Coggia, D., Couvreur, A.: On the security of a Loidreau rank metric code based encryption scheme. Des. Codes Crypt. 88(9), 1941–1957 (2020)

    Article  MathSciNet  Google Scholar 

  16. Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Crypt. 73(2), 641–666 (2014)

    Article  MathSciNet  Google Scholar 

  17. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16

    Chapter  Google Scholar 

  18. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985)

    MathSciNet  Google Scholar 

  19. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_41

    Chapter  Google Scholar 

  20. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and their application to cryptography. In: The Workshop on Coding and Cryptography (WCC) (2013). http://www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf

  21. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

    Article  MathSciNet  Google Scholar 

  22. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptography. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_1

    Chapter  Google Scholar 

  23. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ghatak, A.: Extending Coggia-Couvreur attack on Loidreau’s rank-metric cryptosystem. Des. Codes Crypt. 90(1), 215–238 (2022)

    Article  MathSciNet  Google Scholar 

  25. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998 (ANTS-III). LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

  26. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  Google Scholar 

  27. Loidreau, P.: A Welch–Berlekamp like algorithm for decoding Gabidulin codes. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 36–45. Springer, Heidelberg (2006). https://doi.org/10.1007/11779360_4

    Chapter  Google Scholar 

  28. Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_1

    Chapter  Google Scholar 

  29. Melchor, C.A., Aragon, N., Bardet, M., et al.: ROLLO. Second Round Submission to the NIST Post-quantum Cryptography Call (2020). https://pqc-rollo.org/

  30. Melchor, C.A., Aragon, N., Bettaieb, S., et al.: RQC. Second Round Submission to the NIST Post-quantum Cryptography Call (2020). http://pqc-rqc.org/

  31. Melchor, C.A., Aragon, N., Bettaieb, S., et al.: HQC. Fourth Round Submission to the NIST Post-quantum Cryptography Call (2023). http://pqc-hqc.org

  32. Melchor, C.A., Aragon, N., Dyseryn, V., Gaborit, P., Zémor, G.: LRPC codes with multiple syndromes: near ideal-size KEMs without ideals. In: Cheon, J.H., Johansson, T. (eds.) Post-Quantum Cryptography (PQCrypto), vol. 13512, pp. 45–68. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17234-2_3

  33. Misoczki, R., Tillich, J., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: IEEE International Symposium on Information Theory (ISIT), pp. 2069–2073. IEEE (2013)

    Google Scholar 

  34. NIST: Status report on the second round of the NIST post-quantum cryptography standardization process (2020). https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

  35. NIST: Status report on the third round of the NIST post-quantum cryptography standardization process (2022). https://doi.org/10.6028/NIST.IR.8413-upd1

  36. Ore, O.: On a special class of polynomials. Trans. Am. Math. Soc. 35(3), 559–584 (1933)

    Article  MathSciNet  Google Scholar 

  37. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Probl. Inf. Transm. 38(3), 237–246 (2002)

    Article  MathSciNet  Google Scholar 

  38. Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_5

    Chapter  Google Scholar 

  39. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on generalized Reed-Solomon codes. Discret. Appl. Math. 2(4), 439–444 (1992)

    Article  Google Scholar 

  40. Song, Y., Zhang, J., Huang, X., Wu, W.: Blockwise rank decoding problem and LRPC codes: cryptosystems with smaller sizes. Cryptology ePrint Archive, Paper 2023/1387 (2023). https://eprint.iacr.org/2023/1387

Download references

Acknowledgement

We would like to thank the anonymous reviewers of ASIACRYPT 2023 for their helpful comments and suggestions on earlier versions of our paper. Jiang Zhang, the corresponding author, is supported by the National Key Research and Development Program of China (Grant No. 2022YFB2702000), and by the National Natural Science Foundation of China (Grant Nos. 62022018, 61932019). Xinyi Huang is supported by the National Natural Science Foundation of China (Grant No. 62032005). Wei Wu is supported by the National Natural Science Foundation of China (Grant No. 62372108). This research is also funded in part by the National Natural Science Foundation of China (Grant No. 62172096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Y., Zhang, J., Huang, X., Wu, W. (2023). Blockwise Rank Decoding Problem and LRPC Codes: Cryptosystems with Smaller Sizes. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14444. Springer, Singapore. https://doi.org/10.1007/978-981-99-8739-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8739-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8738-2

  • Online ISBN: 978-981-99-8739-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics