Abstract
We propose a generic construction of password-based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEM). Assuming that the KEM is oneway secure against plaintext-checkable attacks (OW-PCA), we prove that our PAKE protocol is tightly secure in the Bellare-Pointcheval-Rogaway model (EUROCRYPT 2000). Our tight security proofs require ideal ciphers and random oracles. The OW-PCA security is relatively weak and can be implemented tightly with the Diffie-Hellman assumption, which generalizes the work of Liu et al. (PKC 2023), and “almost” tightly with lattice-based assumptions, which tightens the security loss of the work of Beguinet et al. (ACNS 2023) and allows more efficient practical implementation with Kyber. Beyond these, it opens an opportunity of constructing tight PAKE based on various assumptions.
Supported by the Research Council of Norway under Project No. 324235.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is because of the additional multiplicative loss factor depending on S and the length of a password in [4, Theorem 2].
- 2.
Our security notions are in the multi-user, multi-challenge setting. Hence, for simplicity, we do not write the ‘m’ in the abbreviations.
- 3.
More precisely, the argument in [8, page 41] under “Analysis” may not hold true for reply attacks.
- 4.
This essentially forces a secure PAKE protocol not to have more than one partner instances.
References
Abdalla, M., Barbosa, M.: Perfect forward security of SPAKE2. Cryptology ePrint Archive, Report 2019/1194 (2019). https://eprint.iacr.org/2019/1194
Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally composable relaxed password authenticated key exchange. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 278–307. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_10
Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12
Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-authenticated key exchange from group actions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 699–728. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_24
Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_6
Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange protocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_14
Becerra, J., Iovino, V., Ostrev, D., Šala, P., Škrobot, M.: Tightly-secure PAK(E). In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 27–48. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7_2
Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: GeT a CAKE: generic transformations from key encaspulation mechanisms to password authenticated key exchanges. ACNS 2023 (2023). https://eprint.iacr.org/2023/470
Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of security against impersonation under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_11
Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_11
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25
Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Privacy, pp. 72–84. IEEE Computer Society Press (1992)
Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 644–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_22
Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526
Bhattacharyya, R.: Memory-tight reductions for practical key encapsulation mechanisms. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 249–278. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_9
Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_24
Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_8
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press (2008)
Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored for the IIoT. IACR TCHES 2019(2), 1–48 (2019). https://tches.iacr.org/index.php/TCHES/article/view/7384
Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. Cryptology ePrint Archive, Report 2010/190 (2010). https://eprint.iacr.org/2010/190
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev. 26(5), 5–26 (1996). https://doi.org/10.1145/242896.242897
Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_37
Liu, X., Liu, S., Han, S., Gu, D.: EKE meets tight security in the Universally Composable framework. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp. 685–713. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-31368-4_24
MacKenzie, P.: The PAK suite: protocols for password-authenticated key exchange (2002)
Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_8
Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13
Pan, J., Zeng, R.: A generic construction of tightly secure password-based authenticated key exchange. Cryptology ePrint Archive (2023). https://ia.cr/2023/1334
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)
Santos, B.F.D., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups with applications to UC (a)PAKE. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 128–156. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_5
Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
Zhang, J., Yu, Yu.: Two-round PAKE from approximate SPH and instantiations from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Pan, J., Zeng, R. (2023). A Generic Construction of Tightly Secure Password-Based Authenticated Key Exchange. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14445. Springer, Singapore. https://doi.org/10.1007/978-981-99-8742-9_5
Download citation
DOI: https://doi.org/10.1007/978-981-99-8742-9_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8741-2
Online ISBN: 978-981-99-8742-9
eBook Packages: Computer ScienceComputer Science (R0)