Skip to main content

MARS: An Instance-Aware, Modular and Realistic Simulator for Autonomous Driving

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2023)

Abstract

Nowadays, autonomous cars can drive smoothly in ordinary cases, and it is widely recognized that realistic sensor simulation will play a critical role in solving remaining corner cases by simulating them. To this end, we propose an autonomous driving simulator based upon neural radiance fields (NeRFs). Compared with existing works, ours has three notable features: (1) Instance-aware. Our simulator models the foreground instances and background environments separately with independent networks so that the static (e.g., size and appearance) and dynamic (e.g., trajectory) properties of instances can be controlled separately. (2) Modular. Our simulator allows flexible switching between different modern NeRF-related backbones, sampling strategies, input modalities, etc. We expect this modular design to boost academic progress and industrial deployment of NeRF-based autonomous driving simulation. (3) Realistic. Our simulator set new state-of-the-art photo-realism results given the best module selection. Our simulator will be open-sourced while most of our counterparts are not. Project page: https://open-air-sun.github.io/mars/.

H. Zhao—Sponsored by Tsinghua-Toyota Joint Research Fund (20223930097).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5835–5844 (2021)

    Google Scholar 

  2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. arXiv (2022)

    Google Scholar 

  3. Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. http://arxiv.org/abs/2001.10773

  4. Chen, X., Zhao, H., Zhou, G., Zhang, Y.Q.: PQ-transformer: jointly parsing 3D objects and layouts from point clouds. IEEE Robot. Autom. Lett. 7(2), 2519–2526 (2022)

    Article  Google Scholar 

  5. Chen, Y., et al.: GeoSim: realistic video simulation via geometry-aware composition for self-driving. http://arxiv.org/abs/2101.06543

  6. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: fewer views and faster training for free. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12872–12881 (2022)

    Google Scholar 

  7. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16. PMLR (2017)

    Google Scholar 

  8. Fridovich-Keil, S., Meanti, G., Warburg, F., Recht, B., Kanazawa, A.: K-planes: explicit radiance fields in space, time, and appearance. In: Computer Vision and Pattern Recognition (2023)

    Google Scholar 

  9. Fu, X., et al.: Panoptic NeRF: 3D-to-2D label transfer for panoptic urban scene segmentation. In: 2022 International Conference on 3D Vision (3DV), pp. 1–11 (2022)

    Google Scholar 

  10. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  11. Hu, Y., et al.: Planning-oriented autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17853–17862 (2023)

    Google Scholar 

  12. Jin, B., et al.: ADAPT: action-aware driving caption transformer. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 7554–7561 (2023)

    Google Scholar 

  13. Kundu, A., et al.: Panoptic neural fields: a semantic object-aware neural scene representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12871–12881 (2022)

    Google Scholar 

  14. Li, P., et al.: LODE: locally conditioned eikonal implicit scene completion from sparse LiDAR. In: 2023 IEEE International Conference on Robotics and Automation (ICRA). arXiv (2023)

    Google Scholar 

  15. Li, W., et al.: AADS: augmented autonomous driving simulation using data-driven algorithms. Sci. Robot. 4(28), eaaw0863 (2019)

    Google Scholar 

  16. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  17. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 1–15 (2022)

    Article  Google Scholar 

  18. Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11453–11464 (2021)

    Google Scholar 

  19. Ost, J., Mannan, F., Thuerey, N., Knodt, J., Heide, F.: Neural scene graphs for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. arXiv (2021)

    Google Scholar 

  20. Rematas, K., et al.: Urban radiance fields. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12922–12932 (2022)

    Google Scholar 

  21. Tancik, M., et al.: Nerfstudio: a modular framework for neural radiance field development. ACM Trans. Graph. 1(1) (2023)

    Google Scholar 

  22. Tian, B., Liu, M., Gao, H.A., Li, P., Zhao, H., Zhou, G.: Unsupervised road anomaly detection with language anchors. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 7778–7785 (2023)

    Google Scholar 

  23. Tian, B., Luo, L., Zhao, H., Zhou, G.: VIBUS: data-efficient 3D scene parsing with VIewpoint Bottleneck and Uncertainty-Spectrum modeling. J. Photogramm. Remote Sens. 194, 302–318 (2022)

    Article  Google Scholar 

  24. Turki, H., Zhang, J.Y., Ferroni, F., Ramanan, D.: SUDS: scalable urban dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. arXiv (2023)

    Google Scholar 

  25. Yang, Z., et al.: UniSim: a neural closed-loop sensor simulator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1389–1399 (2023)

    Google Scholar 

  26. Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: MonoSDF: exploring monocular geometric cues for neural implicit surface reconstruction. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  27. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  28. Zheng, Y., et al.: STEPS: joint self-supervised nighttime image enhancement and depth estimation. In: 2023 IEEE Conference on Robotics and Automation (ICRA 2023) (2023)

    Google Scholar 

  29. Zhi, S., Laidlow, T., Leutenegger, S., Davison, A.J.: In-place scene labelling and understanding with implicit scene representation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 901 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z. et al. (2024). MARS: An Instance-Aware, Modular and Realistic Simulator for Autonomous Driving. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14473. Springer, Singapore. https://doi.org/10.1007/978-981-99-8850-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8850-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8849-5

  • Online ISBN: 978-981-99-8850-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics