Skip to main content

Low-Light Image Enhancement via Unsupervised Learning

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14473))

Included in the following conference series:

  • 181 Accesses

Abstract

The models based on unsupervised learning methods have achieved prominent achievement in several low-level tasks such as image restoration and low-light enhancement. Many of them are based on generative adversarial networks such as EnlightenGAN. Although EnlightenGAN can be trained without the need for paired images, there are still existing some issues such as insufficient illumination and color distortion. Inspired by the achievement in visual tasks made by Vision Transformer(ViT), we propose a discriminator based on ViT to replace the original fully convolutional network to solve this problem. Furthermore, to improve the illumination enhancement effect, we devise a new loss function enlightened by the luminance in SSIM and multi-scale SSIM. Our method surpasses the state-of-the-art on mainstream testing datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graphics Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  2. Zuiderveld, K.: Contrast Limited Adaptive Histogram Equalization, p. 474–485. Academic Press Professional Inc, USA (1994)

    Google Scholar 

  3. Land, E.H., McCann, J.J.: Lightness and retinex theory. JOSA 61(1), 1–11 (1971)

    Article  Google Scholar 

  4. Land, E.H.: The retinex. Am. Sci. 52(2), 247–264 (1964)

    Google Scholar 

  5. Rahman, Z.U., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 1003–1006. IEEE (1996)

    Google Scholar 

  6. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  7. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural information Processing Systems, vol. 25 (2012)

    Google Scholar 

  8. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  10. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  11. Liu, Y.: Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans. Circuits Syst. Video Technol. 30(4), 929–943 (2020)

    Article  MathSciNet  Google Scholar 

  12. Liu, Y., Zhai, G., Gu, K., Liu, X., Zhao, D., Gao, W.: Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Trans. Multimedia 20(2), 379–391 (2018)

    Article  Google Scholar 

  13. Liu, Y., Gu, K., Wang, S., Zhao, D., Gao, W.: Blind quality assessment of camera images based on low-level and high-level statistical features. IEEE Trans. Multimedia 21(1), 135–146 (2019)

    Article  Google Scholar 

  14. Liu, Y., Gu, K., Li, X., Zhang, Y.: Blind image quality assessment by natural scene statistics and perceptual characteristics. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 16(3), 1–91 (2020)

    Article  Google Scholar 

  15. Hu, R., Liu, Y., Gu, K., Min, X., Zhai, G.: Toward a no-reference quality metric for camera-captured images. IEEE Trans. Cybern. 53(6), 3651–3664 (2023). https://doi.org/10.1109/TCYB.2021.3128023

    Article  Google Scholar 

  16. Min, X., Zhai, G., Gu, K., Liu, Y., Yang, X.: Blind image quality estimation via distortion aggravation. IEEE Trans. Broadcast. 64(2), 508–517 (2018)

    Article  Google Scholar 

  17. Jiang, Y., et al.: Enlightengan: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

    Article  Google Scholar 

  18. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  21. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  22. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)

    Google Scholar 

  23. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  25. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018)

  26. Wang, W., Wei, C., Yang, W., Liu, J.: GladNet: low-light enhancement network with global awareness. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 751–755. IEEE (2018)

    Google Scholar 

  27. Lv, F., Lu, F., Wu, J., Lim, C.: MBLLEN: low-light image/video enhancement using CNNs. In: BMVC, vol. 220, p. 4 (2018)

    Google Scholar 

  28. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)

    Google Scholar 

  29. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  32. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part II. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  33. RichardWebster, B., Anthony, S.E., Scheirer, W.J.: Psyphy: a psychophysics driven evaluation framework for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2280–2286 (2018)

    Article  Google Scholar 

  34. Liu, J., Xu, D., Yang, W., Fan, M., Huang, H.: Benchmarking low-light image enhancement and beyond. Int. J. Comput. Vision 129, 1153–1184 (2021)

    Article  Google Scholar 

  35. Dong, X., Pang, Y., Wen, J.: Fast efficient algorithm for enhancement of low lighting video. In: ACM SIGGRAPH 2010 Posters, pp. 1–1 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under grant 62201538 and Natural Science Foundation of Shandong Province under grant ZR2022QF006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, W., Liu, Y. (2024). Low-Light Image Enhancement via Unsupervised Learning. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14473. Springer, Singapore. https://doi.org/10.1007/978-981-99-8850-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8850-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8849-5

  • Online ISBN: 978-981-99-8850-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics