Abstract
Unmanned Aerial Vehicles (UAVs) have found extensive applications in the field of rescue and navigation scenarios. The objects in UAV images are generally with small sizes, which rises a serious challenge of object detection. Most existing methods address this issue by constructing multi-scale feature pyramids to integrate deep semantic information with shallow layer, but these networks fail to effectively extract and learn features of tiny objects in the shallow layer. In this paper, we propose an Effective Fusion Pyramid Network (EFPNet) for tiny person detection in UAV images. EFPNet consists of a Multi-Dimensional Attention Module (MDAM) and an Effective Feature Fusion Module (EFFM). The MDAM learns the weighted combination of features in both channel and spatial dimensions, which generates attention maps. It enriches semantic information in features. The EFFM utilizes the information from attention maps of different layers, which guides feature fusion between adjacent layers. It maintains consistency between deep and shallow features. Our proposed model achieves an Average Precision (AP) of 60.72% on the TinyPerson dataset, which demonstrate our model outperforms other state-of-the-art detectors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, K., et al.: MMDetection: Open MMLab detection toolbox and benchmark. arXiv:1906.07155 (2019)
Cheng, G., Yuan, X., Yao, X., Yan, K., Zeng, Q., Han, J.: Towards large-scale small object detection: Survey and benchmarks. arXiv:2207.14096 (2022)
Cheng, Y., Xu, H., Liu, Y.: Robust small object detection on the water surface through fusion of camera and millimeter wave radar. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15243–15252 (2021)
Dai, J., et al.: Deformable convolutional networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 764–773 (2017)
Duan, C., Wei, Z., Zhang, C., Qu, S., Wang, H.: Coarse-grained density map guided object detection in aerial images. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 2789–2798 (2021)
Gao, S., Liu, C., Zhang, H., Zhou, Z., Qiu, J.: Multiscale attention-based detection of tiny targets in aerial beach images. Front. Mar. Sci. 9, 1073615 (2022)
Ghiasi, G., Lin, T.Y., Pang, R., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7029–7038 (2019)
Gong, Y., Yu, X., Ding, Y., Peng, X., Zhao, J., Han, Z.: Effective fusion factor in FPN for tiny object detection. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1159–1167 (2020)
Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: AugFPN: improving multi-scale feature learning for object detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12592–12601 (2019)
Hong, M., Li, S., Yang, Y., Zhu, F., Zhao, Q., Lu, L.: SSPNet: scale selection pyramid network for tiny person detection from UAV images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)
Hu, M., Li, Y., Fang, L., Wang, S.: A2-FPN: attention aggregation based feature pyramid network for instance segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15338–15347 (2021)
Huang, S., Lu, Z., Cheng, R., He, C.: FaPN: feature-aligned pyramid network for dense image prediction. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 844–853 (2021)
Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv:1902.07296 (2019)
Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: FoveaBox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2019)
Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–519 (2019)
Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2016)
Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2017)
Liu, H., Liu, F., Fan, X., Huang, D.: Polarized self-attention: towards high-quality pixel-wise regression. arXiv:2107.00782 (2021)
Liu, S., Huang, D., Wang, Y.: Learning spatial fusion for single-shot object detection. arXiv:1911.09516 (2019)
Liu, W., et al.: SSD: single shot multibox detector. In: European Conference on Computer Vision (2015)
Liu, Y., Li, Q., Yuan, Y., Du, Q., Wang, Q.: ABNet: adaptive balanced network for multi-scale object detection in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002 (2021)
Luo, Y., et al.: CE-FPN: enhancing channel information for object detection. Multimedia Tools Appl. 81, 30685–30704 (2021)
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)
Varga, L.A., Kiefer, B., Messmer, M., Zell, A.: SeaDronesSee: a maritime benchmark for detecting humans in open water. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3686–3696 (2021)
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: European Conference on Computer Vision (2018)
Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z.: Scale match for tiny person detection. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1246–1254 (2019)
Zhang, R., et al.: Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging. Remote. Sens. 12, 2621 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, R., Liu, Q., Wu, K. (2024). EFPNet: Effective Fusion Pyramid Network for Tiny Person Detection in UAV Images. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14473. Springer, Singapore. https://doi.org/10.1007/978-981-99-8850-1_23
Download citation
DOI: https://doi.org/10.1007/978-981-99-8850-1_23
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8849-5
Online ISBN: 978-981-99-8850-1
eBook Packages: Computer ScienceComputer Science (R0)