Skip to main content

EFPNet: Effective Fusion Pyramid Network for Tiny Person Detection in UAV Images

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14473))

Included in the following conference series:

  • 708 Accesses

Abstract

Unmanned Aerial Vehicles (UAVs) have found extensive applications in the field of rescue and navigation scenarios. The objects in UAV images are generally with small sizes, which rises a serious challenge of object detection. Most existing methods address this issue by constructing multi-scale feature pyramids to integrate deep semantic information with shallow layer, but these networks fail to effectively extract and learn features of tiny objects in the shallow layer. In this paper, we propose an Effective Fusion Pyramid Network (EFPNet) for tiny person detection in UAV images. EFPNet consists of a Multi-Dimensional Attention Module (MDAM) and an Effective Feature Fusion Module (EFFM). The MDAM learns the weighted combination of features in both channel and spatial dimensions, which generates attention maps. It enriches semantic information in features. The EFFM utilizes the information from attention maps of different layers, which guides feature fusion between adjacent layers. It maintains consistency between deep and shallow features. Our proposed model achieves an Average Precision (AP) of 60.72% on the TinyPerson dataset, which demonstrate our model outperforms other state-of-the-art detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, K., et al.: MMDetection: Open MMLab detection toolbox and benchmark. arXiv:1906.07155 (2019)

  2. Cheng, G., Yuan, X., Yao, X., Yan, K., Zeng, Q., Han, J.: Towards large-scale small object detection: Survey and benchmarks. arXiv:2207.14096 (2022)

  3. Cheng, Y., Xu, H., Liu, Y.: Robust small object detection on the water surface through fusion of camera and millimeter wave radar. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15243–15252 (2021)

    Google Scholar 

  4. Dai, J., et al.: Deformable convolutional networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 764–773 (2017)

    Google Scholar 

  5. Duan, C., Wei, Z., Zhang, C., Qu, S., Wang, H.: Coarse-grained density map guided object detection in aerial images. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 2789–2798 (2021)

    Google Scholar 

  6. Gao, S., Liu, C., Zhang, H., Zhou, Z., Qiu, J.: Multiscale attention-based detection of tiny targets in aerial beach images. Front. Mar. Sci. 9, 1073615 (2022)

    Article  Google Scholar 

  7. Ghiasi, G., Lin, T.Y., Pang, R., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7029–7038 (2019)

    Google Scholar 

  8. Gong, Y., Yu, X., Ding, Y., Peng, X., Zhao, J., Han, Z.: Effective fusion factor in FPN for tiny object detection. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1159–1167 (2020)

    Google Scholar 

  9. Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: AugFPN: improving multi-scale feature learning for object detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12592–12601 (2019)

    Google Scholar 

  10. Hong, M., Li, S., Yang, Y., Zhu, F., Zhao, Q., Lu, L.: SSPNet: scale selection pyramid network for tiny person detection from UAV images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  11. Hu, M., Li, Y., Fang, L., Wang, S.: A2-FPN: attention aggregation based feature pyramid network for instance segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15338–15347 (2021)

    Google Scholar 

  12. Huang, S., Lu, Z., Cheng, R., He, C.: FaPN: feature-aligned pyramid network for dense image prediction. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 844–853 (2021)

    Google Scholar 

  13. Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv:1902.07296 (2019)

  14. Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: FoveaBox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2019)

    Article  Google Scholar 

  15. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–519 (2019)

    Google Scholar 

  16. Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2016)

    Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2017)

    Article  Google Scholar 

  18. Liu, H., Liu, F., Fan, X., Huang, D.: Polarized self-attention: towards high-quality pixel-wise regression. arXiv:2107.00782 (2021)

  19. Liu, S., Huang, D., Wang, Y.: Learning spatial fusion for single-shot object detection. arXiv:1911.09516 (2019)

  20. Liu, W., et al.: SSD: single shot multibox detector. In: European Conference on Computer Vision (2015)

    Google Scholar 

  21. Liu, Y., Li, Q., Yuan, Y., Du, Q., Wang, Q.: ABNet: adaptive balanced network for multi-scale object detection in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021)

    Google Scholar 

  22. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002 (2021)

    Google Scholar 

  23. Luo, Y., et al.: CE-FPN: enhancing channel information for object detection. Multimedia Tools Appl. 81, 30685–30704 (2021)

    Article  Google Scholar 

  24. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)

    Article  Google Scholar 

  25. Varga, L.A., Kiefer, B., Messmer, M., Zell, A.: SeaDronesSee: a maritime benchmark for detecting humans in open water. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3686–3696 (2021)

    Google Scholar 

  26. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: European Conference on Computer Vision (2018)

    Google Scholar 

  27. Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z.: Scale match for tiny person detection. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1246–1254 (2019)

    Google Scholar 

  28. Zhang, R., et al.: Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging. Remote. Sens. 12, 2621 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R., Liu, Q., Wu, K. (2024). EFPNet: Effective Fusion Pyramid Network for Tiny Person Detection in UAV Images. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14473. Springer, Singapore. https://doi.org/10.1007/978-981-99-8850-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8850-1_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8849-5

  • Online ISBN: 978-981-99-8850-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics