Skip to main content

Heterogeneous Link Prediction via Mutual Information Maximization Between Node Pairs

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14473))

Included in the following conference series:

  • 175 Accesses

Abstract

Heterogeneous graphs (HGs), possessing various node and edge types, are essential in capturing complex relationships in networks. Link prediction on heterogeneous graphs has wide applications in real-world. Although existing methods for learning representations of HGs have made substantial progress in link prediction tasks, they primarily focus on the heterogeneous attributes of nodes when capturing the heterogeneity of heterogeneous graphs, therefore, it performs poorly in maintaining pairwise relationships in HG. To address this limitation, we propose a simple yet effective model for link prediction on HGs via Mutual Information Maximization between Node Pairs (MIMNP). We use an Multi-Layer Perceptron as a node encoder to learn node embeddings and maximizes the mutual information between node pairs. Our model effectively preserves the pairwise relationships between nodes, resulting in enhanced link prediction performance. Extensive experiments conducted on three real-world datasets consistently demonstrate that MIMNP outperforms state-of-the-art baselines in link prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang, J., et al.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2008)

    Google Scholar 

  2. El-Kishky, A., et al.: Twhin: embedding the twitter heterogeneous information network for personalized recommendation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2022)

    Google Scholar 

  3. Shao, K., Zhang, Y., Wen, Y., et al.: DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Brief. Bioinform. 23(3), bbac109 (2022)

    Article  Google Scholar 

  4. Jin, D., et al.: A survey of community detection approaches: from statistical modeling to deep learning. IEEE Trans. Knowl. Data Eng. 35(2), 1149–1170 (2021)

    Google Scholar 

  5. Tao, X., et al.: Mining health knowledge graph for health risk prediction. World Wide Web 23, 2341–2362 (2020)

    Article  Google Scholar 

  6. Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference (2019)

    Google Scholar 

  7. Fu, X., et al.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of the Web Conference 2020 (2020)

    Google Scholar 

  8. Zhang, C., et al.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)

    Google Scholar 

  9. Fu, T.-Y., Lee, W.-C., Lei, Z.: Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (2017)

    Google Scholar 

  10. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  11. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  12. Hu, Z., et al.: Heterogeneous graph transformer. In: Proceedings of the Web Conference 2020 (2020)

    Google Scholar 

  13. Liu, Z., et al.: HeteEdgeWalk: a heterogeneous edge memory random walk for heterogeneous information network embedding. Entropy 25(7), 998 (2023)

    Article  MathSciNet  Google Scholar 

  14. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  15. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B 71, 623–630 (2009)

    Article  Google Scholar 

  16. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  17. Zhang, M., Chen, Y.: Weisfeiler-Lehman neural machine for link prediction. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  18. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  19. Dong, W., et al.: Node representation learning in graph via node-to-neighbourhood mutual information maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  20. Ren, Y., Liu, B.: Heterogeneous deep graph infomax. In: Workshop of Deep Learning on Graphs: Methodologies and Applications co-located with the Thirty-Fourth AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  21. Park, C., et al.: Task-guided pair embedding in heterogeneous network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management (2019)

    Google Scholar 

  22. Zhang, C., Swami, A., Chawla, N.V.: SHNE: representation learning for semantic-associated heterogeneous networks. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (2019)

    Google Scholar 

  23. Fan, H., et al.: Heterogeneous hypergraph variational autoencoder for link prediction. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4125–4138 (2021)

    Google Scholar 

  24. Schulman, J., et al.: High-Dimensional Continuous Control Using Generalized Advantage Estimation. CoRR abs/1506.02438 (2015)

    Google Scholar 

  25. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NIPS Workshop on Bayesian Deep Learning (2016)

    Google Scholar 

  26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2016)

    Google Scholar 

  27. Shi, C., et al.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2018)

    Article  Google Scholar 

  28. Belghazi, M.I., et al.: Mutual information neural estimation. In: International Conference on Machine Learning. PMLR (2018)

    Google Scholar 

  29. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  30. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  31. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  32. Veličković, P., et al.: Deep graph infomax. In: International Conference on Learning Representations (2018)

    Google Scholar 

  33. Jiao, P., et al.: Role discovery-guided network embedding based on autoencoder and attention mechanism. IEEE Trans. Cybern. 53(1), 365–378 (2021)

    Article  Google Scholar 

  34. Gao, M., et al.: Inductive link prediction via interactive learning across relations in multiplex networks. IEEE Trans. Comput. Soc. Syst. (2022)

    Google Scholar 

  35. Jiao, P., et al.: HB-DSBM: modeling the dynamic complex networks from community level to node level. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  36. Jiao, P., et al.: A survey on role-oriented network embedding. IEEE Trans. Big Data 84, 933–952 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LDT23F01015F01 and Grant LDT23F01012F01, in part by the Fundamental Research Funds for the Provincial Universities of Zhejiang Grant GK229909299001-008 and in part by the National Natural Science Foundation of China under Grant 62003120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengzhou Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Liu, Z., Gao, M., Jiao, P. (2024). Heterogeneous Link Prediction via Mutual Information Maximization Between Node Pairs. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14473. Springer, Singapore. https://doi.org/10.1007/978-981-99-8850-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8850-1_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8849-5

  • Online ISBN: 978-981-99-8850-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics