Skip to main content

Domain Incremental Learning for EEG-Based Seizure Prediction

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2023)

Abstract

When building seizure prediction systems, the typical research scenario is patient-specific. In this scenario, the model is limited to performing well for individual patients and cannot acquire knowledge transferable to new patients to learn a set of universal parameters applicable to all patients. To this end, we investigate a new task scenario, domain incremental (DI) learning, which aims to build a unified epilepsy prediction system that performs well across patients by incrementally learning new patients. However, the neural network is susceptible to the problem of catastrophic forgetting (CF) during incremental training, which quickly forgets the knowledge learned from past tasks due to differences in domain distributions. To address this problem, we introduce an experience replay (ER) method, which stores a few samples from previous patients and then replays them in new patient training to review past knowledge. In addition, we propose a novel ER-based centroid matching method (ER-CM) that computes the class centroid in the feature space using subsets stored in the memory buffer. The ER-CM regularizes incremental training by matching the distance between sample embeddings and class centroid, providing additional guidance for parameter updates. Experimental results demonstrate that the ER approach substantially reduces CF and significantly improves performance when combined with CM.

This work is supported by the National Natural Science Foundation of China (Grants 41901350, 32271431).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aljundi, R., et al.: Online continual learning with maximally interfered retrieval. arXiv:1908.04742 (2019)

  2. Bhattacharya, A., Baweja, T., Karri, S.: Epileptic seizure prediction using deep transformer model. Int. J. Neural Syst. 32(02), 2150058 (2022)

    Article  Google Scholar 

  3. Brinkmann, B.H., et al.: Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain 139(6), 1713ā€“1722 (2016)

    Article  Google Scholar 

  4. Chaudhry, A., et al.: On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486 (2019)

  5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  6. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 831ā€“839 (2019)

    Google Scholar 

  7. Iscen, A., Zhang, J., Lazebnik, S., Schmid, C.: Memory-efficient incremental learning through feature adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 699ā€“715. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_41

    Chapter  Google Scholar 

  8. Lahmiri, S., Shmuel, A.: Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients. IEEE Trans. Instrum. Meas. 68(3), 791ā€“796 (2018)

    Article  Google Scholar 

  9. Li, C., Deng, Z., Song, R., Liu, X., Qian, R., Chen, X.: EEG-based seizure prediction via model uncertainty learning. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 180ā€“191 (2022)

    Article  Google Scholar 

  10. Li, C., Huang, X., Song, R., Qian, R., Liu, X., Chen, X.: EEG-based seizure prediction via transformer guided CNN. Measurement 203, 111948 (2022)

    Article  Google Scholar 

  11. Li, S., Zhou, W., Yuan, Q., Liu, Y.: Seizure prediction using spike rate of intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 880ā€“886 (2013)

    Article  Google Scholar 

  12. Li, Y., Liu, Y., Guo, Y.Z., Liao, X.F., Hu, B., Yu, T.: Spatio-temporal-spectral hierarchical graph convolutional network with semisupervised active learning for patient-specific seizure prediction. IEEE Trans. Cybern. 52(11), 12189ā€“12204 (2021)

    Article  Google Scholar 

  13. Liang, D., Liu, A., Gao, Y., Li, C., Qian, R., Chen, X.: Semi-supervised domain-adaptive seizure prediction via feature alignment and consistency regularization. IEEE Trans. Instrum. Meas. 72, 1ā€“12 (2023). https://doi.org/10.1109/TIM.2023.3261919

    Article  Google Scholar 

  14. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2017)

    Google Scholar 

  15. Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., Sanner, S.: Online continual learning in image classification: an empirical survey. Neurocomputing 469, 28ā€“51 (2022)

    Article  Google Scholar 

  16. Mai, Z., Li, R., Kim, H., Sanner, S.: Supervised contrastive replay: revisiting the nearest class mean classifier in online class-incremental continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3589ā€“3599 (2021)

    Google Scholar 

  17. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109ā€“165. Elsevier (1989)

    Google Scholar 

  18. Ozcan, A.R., Erturk, S.: Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach. IEEE Trans. Neural Syst. Rehabil. Eng. 27(11), 2284ā€“2293 (2019)

    Article  Google Scholar 

  19. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5533ā€“5542 (2016)

    Google Scholar 

  20. Shoeb, A.H.: Application of machine learning to epileptic seizure onset detection and treatment, Ph. D. thesis, Massachusetts Institute of Technology (2009)

    Google Scholar 

  21. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in neural information processing systems, vol. 30 (2017)

    Google Scholar 

  22. Tawhid, M.N.A., Siuly, S., Li, T.: A convolutional long short-term memory-based neural network for epilepsy detection from EEG. IEEE Trans. Instrum. Meas. 71, 1ā€“11 (2022)

    Article  Google Scholar 

  23. Truong, N.D., et al.: Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw. 105, 104ā€“111 (2018)

    Article  Google Scholar 

  24. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37ā€“57 (1985)

    Article  MathSciNet  Google Scholar 

  25. Xu, Y., Yang, J., Zhao, S., Wu, H., Sawan, M.: An end-to-end deep learning approach for epileptic seizure prediction. In: 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 266ā€“270. IEEE (2020)

    Google Scholar 

  26. Zhao, Y., Li, C., Liu, X., Qian, R., Song, R., Chen, X.: Patient-specific seizure prediction via adder network and supervised contrastive learning. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 1536ā€“1547 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Z., Mao, T., Shao, C., Li, C., Chen, X. (2024). Domain Incremental Learning for EEG-Based Seizure Prediction. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14474. Springer, Singapore. https://doi.org/10.1007/978-981-99-9119-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9119-8_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9118-1

  • Online ISBN: 978-981-99-9119-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics