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Abstract. Omnidirectional videos (ODVs) play an increasingly impor-
tant role in the application fields of medical, education, advertising,
tourism, etc. Assessing the quality of ODVs is significant for service-
providers to improve the user’s Quality of Experience (QoE). However,
most existing quality assessment studies for ODVs only focus on the
visual distortions of videos, while ignoring that the overall QoE also de-
pends on the accompanying audio signals. In this paper, we first establish
a large-scale audio-visual quality assessment dataset for omnidirectional
videos, which includes 375 distorted omnidirectional audio-visual (A/V)
sequences generated from 15 high-quality pristine omnidirectional A/V
contents, and the corresponding perceptual audio-visual quality scores.
Then, we design three baseline methods for full-reference omnidirectional
audio-visual quality assessment (OAVQA), which combine existing state-
of-the-art single-mode audio and video QA models via multimodal fu-
sion strategies. We validate the effectiveness of the A/V multimodal fu-
sion method for OAVQA on our dataset, which provides a new bench-
mark for omnidirectional QoE evaluation. Our dataset is available at
https://github.com/iamazxl/OAVQA.

Keywords: Audio-visual Quality · Omnidirectional videos · Quality as-
sessment · Dataset.

1 Introduction

Virtual Reality (VR) has attracted substantial attention from industry and re-
search communities due to its ability to provide users with a stereoscopic and
immersive experience through Head-Mounted Displays (HMDs) [8,6]. Omnidirec-
tional Videos (ODVs), a.k.a, 360◦ videos, panoramic videos or spherical videos,
have emerged as a significant form of VR content. By using VR HMDs and
adjusting their head orientation, users can explore the audio-visual content in
any direction. This immersive experience of simulating real-world scenes has
contributed to the popularity of ODVs in various application fields, including
medical, education, advertising, tourism, etc.

Compared to traditional videos, ultra high-definition ODVs contain more
scene information and multi-channel audio information, which results in a dou-
bling of ODV data volume. Due to the huge amount of data, playback stucking
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and quality switching caused by network delays and fluctuations usually occur
during video transmission, which leads to the degradation of ODVs quality, and
further affects the QoE of ODVs. Moreover, ODVs may also suffer from the dis-
tortions introduced during the process of capturing or displaying, which further
decreases the QoE. Therefore, to provide users with a smooth viewing experi-
ence, it is important to monitor the quality of ODVs during the procedure of
shooting, codec, transmission, etc., and perform optimization accordingly.

In the past few decades, many objective quality assessment methods have
been proposed for traditional plane videos [23,19], and some recent works have
also explored the problem of audio-visual video quality assessment [21]. Recently,
with the popularity of VR, many studies have explored the problem of omnidi-
rectional image quality assessment [3,24] and omnidirectional video quality as-
sessment [13]. However, most omnidirectional video quality assessment research
only focuses on the single-mode signal, i.e., visual information, few works have
investigated the multimodal quality assessment of ODVs incorporating audio in-
formation. As an important part of ODVs, spatial audio may strongly influence
the human perceptual quality, thus it is necessary to conduct in-depth research
on the audio-visual quality assessment of the omnidirectional videos.

In this paper, we make three contributions to the omnidirectional audio-
visual quality assessment (OAVQA) field. Firstly, we construct a large-scale om-
nidirectional audio-visual quality assessment dataset to solve the poverty prob-
lem of the corresponding dataset. We first collected 15 high-quality reference
omnidirectional audio-visual (A/V) content, and generated 375 distorted ODVs
degraded from them. Subsequently, 22 subjects were recruited to participate in
the subjective quality assessment experiment, and the audio-visual quality rat-
ings of the reference and distorted videos were collected. Secondly, we design
three baseline methods for full-reference omnidirectional AVQA. The baseline
models first utilize the existing state-of-the-art audio and video single-mode qual-
ity assessment methods to predict the audio quality and video quality of ODVs,
respectively, then utilize different multimodal fusion strategies to fuse A/V pre-
diction results and obtain the overall quality results of the ODVs. Thirdly, we
compare and analyze the prediction performance of these models on our dataset,
and establish a new benchmark for future studies on OAVQA.

2 Related Work

2.1 Omnidirectional Video Quality Assessment Dataset

Table 1 provides an overview of several existing omnidirectional video quality
assessment datasets. It can be observed that most of the existing ODV quality
assessment datasets lack spatial audio information, and mainly focus on visual
distortions, while audio distortions are rarely been considered.

2.2 Quality Assessment Models

Omnidirectional video quality assessment. As a common storage format of
ODVs, ERP projection has severe mapping stretches near the poles. In order to
solve this problem, Yu et al. [31] proposed a spherical PSNR scheme (S-PSNR),
which is based on a set of uniform sampling points on the spherical surface, the
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Table 1: An overview of omnidirectional video quality assessment datasets.
“Mute” means mute audio and “ambisonics” indicates spatial audio. SI and
TI represent spatial information and temporal information respectively. QP in-
dicates quantization parameter and CRF means constant rate factor, which is
used to control the video bitrate.

Dataset Video Num Audio Distortion Type QoE

Schatz et al. [22] 10 Mute Stalling MOS(1∼5)
Meng et al. [20] 774 Mute Frame size, Frame rate, Quantization stepsize, Resolutions MOS(1∼10)
Fei et al. [11] 468 Mute Bandwidth, Packet loss, Latency, Presence MOS(1∼5)

Anwar et al. [1] 208 Mute Bitrate, Stalling MOS
Fan et al. [10] 48 Mute Bitrate, Gender, Presence, TI, SI MOS(0∼9)
IVQAD [9] 150 Mute Bitrate, Frame rate, Resolution MOS(1∼5)

VQA-ODV [18] 600 Mute QP, Projection format DMOS(0 ∼ 60)
Fela et al. [12] 576 Ambisonics QP, Resolution, Audio bitrate MOS(0 ∼ 100)

Ours 390 Ambisonics
Audio bitrate, CRF, Resolution,

Noise, Blur, Stucking
MOS(1∼10)

corresponding position on the mapping plane is calculated by different mapping
formulas. Sun et al. proposed the Weighted to Spherically uniform PSNR (WS-
PSNR) [25], which is directly performed in the original format and combined with
different stretching weights according to different mapping methods. Anwar et al.
[1] established an ODVs quality assessment model using the Bayesian inference
method, and evaluated the impact of buffering on users’ perceptual quality at
different bitrates. Fan et al. [10] established an ODVs dataset that contains
various distortions such as compression distortion and quality switching, and
then used machine learning methods to establish VQA models.

Omnidirectional audio-visual quality assessment. As an important part
of ODVs, the influence of spatial audio on perceptual quality has rarely been
studied. Zhang et al. [33] presented a quality assessment methodology for audio-
visual multimedia in virtual reality environment. They presented a panoramic
audio-visual dataset and the quality factors which represent different distortions
were applied as the input to neural network. Fela et al. [14] utilized PSNR and its
variants designed for ODVs, i.e., WS-PSNR, CPP-PSNR and S-PSNR [31,32,25],
as the quality scores and studied the perceptual audio-visual quality prediction
based on the fusion of these scores [13]. Four machine learning models includ-
ing multiple linear regression, decision tree, random forest, and support vector
machine (SVM), were tested.

3 Omnidirectional Audio-visual Quality Assessment
Dataset (OAVQAD)

3.1 Reference and Distorted Contents
We first captured 162 different ODVs with different scenes using a professional
VR camera Insta360 Pro2. Then, we selected 15 high-quality ODVs from the
collected ODVs as the reference videos in our OAVQAD. We utilized FFmpeg
to clip the duration of the selected ODVs to 6s. Each ODV has a resolution of
8K (7680×3840) in equirectangular projection (ERP) format with a frame rate
of 29.97 fps. All ODVs contain first order ambisonics (FOA) with 48,000 Hz
audio sampling rate and four audio channels. The audio and video formats are
shown in Table 2. The ODV contents include acappella chorus, shopping, guitar
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Acappella Basketball Canteen Cat Chatting

Class Crossing Discussion Gardener

Greeting Guide

Drawbridge

Guitar Gym Harmonica

Fig. 1: EPR format previews of 15 reference ODVs used in our OAVQAD.

Table 2: Omnidirectional audio and video format parameters.

Resolution Frame rate Bitrate Format Bit depth Duration Encoding

Video 8K 29.97fps 144Mbps YUV420 8bit 6s H.265
Audio - - 3072Kbps FOA 16bit 6s AAC-LC

playing, restaurant ordering, etc. Fig.1 shows the ERP format previews of the
selected 15 reference ODVs.

We utilized advanced audio coding (AAC) as the audio encoding method
provided by FFmpeg 4.4, and used constant bitrate (CBR) mode to set the
audio bitrate to 64Kbps, 32Kbps and 16Kbps, respectively, thereby generating
three levels of perceptually well-separated audio compression distortion. Then,
we chose HEVC as the video encoding method provided by FFmpeg libx265
encoder, and for each source video we applied 3 different compression levels,
i.e., 32, 37 and 42 in constant rate factor (CRF) mode. Besides, we also set the
video resolution to three levels including 4K (3840×1920), 2K (1920×960), 1K
(1080×540). Moreover, in order to adapt to a wider range of application sce-
narios, we further introduced more abundant distortion types and added three
types of distortions [7,5] including noise, blur, and stucking, and generated dis-
torted ODVs with various levels of these distortions. To summarize, we applied
25 distortion conditions to 15 reference ODVs, resulting in a total of 375 (15 ×
25) distorted ODVs.

3.2 Subjective Experiment Methodology

Experiment Apparatus. Since the subjective experiment was needed to be
conducted in a VR immersive environment, we used HTC Vive Pro Eye as the
HMD to demonstrate ODVs and collect subjective quality ratings. The subjec-
tive experiment platform used to play 8K ODVs and perform scoring interaction
was build based on Unity 1.1.0 as shown in Fig.2.

Experiment Procedure. The subjective experiment was conducted in a sub-
jective study room in a university. A total of 22 subjects (14 males and 8 females)
were invited to participate in the subjective experiment. The subjects were be-
tween 20 and 28 years old (mean 22.62, variance 5.23) and were all graduate and
undergraduate students. All subjects had normal or corrected-to-normal vision
and hearing. In the experiment, subjects firstly received the guidance on the use
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Fig. 2: Demonstration of the subjective experiment interface based on the Unity
platform.
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Fig. 3: Histogram of MOS distribution in the database.

of VR equipment, including HMD and controllers. Then a training session was
performed for the subjects, making them be familiarized with the user interface
as well as the general range and types of distortions. In the testing session, sub-
jects watched 390 ODVs and gave perceptual scores of the overall A/V quality.
The order of the test videos was random for each subject to avoid bias.

3.3 Subjective Data Processing and Analysis

We followed the subjective data processing method recommended by ITU [4,2] to
perform the outlier detection and subject rejection. None of the 22 subjects was
identified as an outlier and eliminated. We normalized the raw scores of subjects
to Z-scores ranging between 0 and 100 and calculated the mean of Z-scores to
obtain the final mean opinion scores (MOSs), which are formulated as follows:

zij =
rij − µi

σi
, z′ij =

100 (zij + 3)

6
, (1)

MOSj =
1

N

N∑
i=1

z′ij , (2)

where rij is the original score of the i-th subject on the j-th sequence, µi

and σi are the mean rating and the standard deviation given by subject i, N
is the total number of subjects. Fig.3 draws the histogram of MOS distribution
over the entire database, indicating that the perceptual quality scores are widely
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distributed in the [0, 100] interval, basically covering every score segment, and
generally showing a normal distribution. It also manifests that the perceptual
quality distribution conforms to our expectations and the distortions setting is
quite reasonable.

4 Objective Omnidirectional Audio-Visual Quality
Assessment

4.1 Single-mode Models

Many video and audio quality assessment methods have been proposed sepa-
rately in previous studies. These quality assessment algorithms, only predict
quality of single-modal audio or video signals, can be called as single-mode qual-
ity assessment methods. We first utilize the existing state-of-the-art single-mode
quality assessment methods to predict the omnidirectional video and audio qual-
ity, respectively. Since both the single-mode AQA and VQA prediction scores
can characterize one aspect of the distortion severity of the distorted video, it is
reasonable to directly use the single-mode models to predict the overall audio-
visual quality score of the ODVs.

The well-known single-mode assessment models adopted in this paper are
introduced as follows:
– Video: VMAF [19], SSIM [28], MS-SSIM [29], VIFP [23], FSIM [34],

GMSD [30], WS-PSNR [25], CPP-PSNR [32], S-PSNR [31].
– Audio: PEAQ [27], STOI [26], VISQOL [16], LLR [17], SNR [17], segSNR [15].

4.2 Weighted-Product Fusion

A single-mode audio/visual quality assessment metric can only characterize one
quality aspect thus cannot fully represent the overall subjective perceptual qual-
ity of an ODV. Therefore, it is important to use appropriate multimodal feature
fusion method to predict the A/V quality of ODVs. The simplest fusion method
is to directly multiply the quality scores of a VQA model and an AQA model as
the overall quality score of ODVs.

However, for human audio-visual perception, video and audio quality often
occupy different importance in ODVs, and people may pay more attention to
visual quality. The weighted product can balance the influence of different modal-
ities by assigning different weights to each of them, so the weighted product is
a better choice for score fusion compared to the direct multiplication method.
The weighted product can be formulated as

Qav = Q̂w
v · Q̂1−w

a , (3)

where Q̂a and Q̂v are normalized score of the audio and video, w and 1 − w
represent the weights of video and audio quality respectively, 0 ≤ w ≤ 1. Q̂a and

Q̂v are calculated by Q̂a =
Qa−Qamin

Qamax−Qamin
and Q̂v =

Qv−Qvmin

Qvmax−Qvmin
, where Qamin ,

Qamax
, Qvmin

and Qvmax
bound Qa and Qv respectively. The optimal weights

depend on the used single-mode A/V quality evaluation models and we vary
the weight from 0 to 1 with 0.05 step increment to find the optimal weight w.
Since the score ranges of the video and audio quality assessment models may
be different, the multiplication method can only be performed after they are
appropriately scaled or normalized.
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Table 3: Video and audio quality prediction algorithms and their corresponding
feature types.

Category Models Feature Decomposed features.

Video

VMAF [19] 6 4 scales of VIF, detail loss, motion
SSIM [28] 2 Luminance similarity, contrast and structural similarity
MS-SSIM [29] 6 Luminance similarity, 5 scales of contrast and structural similarity
VIFP [23] 4 4 scales of VIFP features
FSIM [34] 3 Phase congruency, gradient magnitude, and chrominance similarity
GMSD [30] 2 Mean and standard deviation of gradient magnitude similarity
WS-PSNR [25] 3 PSNR of Y, U, V components
CPP-PSNR [32] 3 PSNR of Y, U, V components
S-PSNR [31] 3 PSNR of Y, U, V components

Audio

PEAQ [27] 11 11 model output variables before the neural network
STOI [26] 1 The complete algorithm
VISQOL [16] 3 Narrowband, wideband, fullband versions of VISOOL
LLR [17] 1 The complete algorithm
SNR [17] 1 The complete algorithm
seg-SNR [15] 1 The complete algorithm

4.3 Support Vector Regression Fusion

Since Support Vector Regression (SVR) is a commonly used machine learning
algorithm for establishing nonlinear relationships between inputs and outputs,
we also utilize the SVR method to integrate the quality prediction scores of
single-mode models

Qav = SVR(Qv, Qa), (4)

where Qv and Qa represent the quality prediction scores of video and audio,
respectively, and Qav denotes the fused A/V quality scores. In this case, SVR
uses the single-mode quality scores predicted by traditional AQA and VQA
algorithms respectively as the inputs, and the quality score (i.e., MOS) as the
labels for regression function training.

The performance of SVR fusion methods can be further improved by substi-
tuting scores with quality-aware feature vectors fv and fa, which can be either
hand-crafted features or extracted features from existing popular AQA and VQA
models. In this way, we can better fuse video and audio quality prediction re-
sults by fully utilizing the quality features of audio and video, thereby improving
the performance of the entire model. This feature-based fusion method can be
expressed as:

Qav = SVR(fv, fa). (5)

The video and audio quality-aware feature vectors used here are extracted from
some existing AQA and VQA models, which are summarized in Table 3.

5 Experiment Validation

5.1 Evaluation of Single-mode Models

We test different single-mode quality assessment models (6 audio models and 9
video models) on our omnidirectional AVQA dataset to analyze the effectiveness
of single-mode quality models. Experimental results are illustrated in Fig.4. For
AQA models, STOI, VISQOL, SNR, and segSNR yield relatively good perfor-
mances on our database, in which STOI achieves the both highest SRCC and
PLCC performance. Most of the VQA models show similar performance, and all
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Fig. 4: Performances of single-mode models on overall audio-visual quality pre-
diction.
of them are not able to predict A/V quality effectively with SRCC and PLCC
below 0.6. The above analysis shows that most single-mode quality assessment
models have a poor performance on our OAVQAD, indicating the necessity of
fusing single-mode quality prediction results for more accurate OAVQA.

5.2 Evaluation of Weighted-product Fusion
For weighted-product fusion methods, we randomly divide the dataset into 80%
training set and 20% test set. All distorted ODVs from the same reference ODVs
are placed in the same set to ensure that the video content of the two set are
completely separated.

In the weighted-product fusion, a total of 54 (9 video models × 6 audio
models) weighted product quality fusion models are generated. In order to nor-
malize the prediction scores of the single-mode quality prediction models, the
following normalization functions are used: Q

′

VMAF = 1
100QVMAF, Q

′

WS-PSNR =
1
29 (QWS-PSNR−23),Q

′

S-PSNR = 1
29 (QS-PSNR−23),Q

′

CPP-PSNR = 1
29 (QCPP-PSNR−

23), Q
′

GMSD = 1 − 1
0.26QGMSD, Q

′

PEAQ = 1 + 1
3.5 (QPEAQ − 0.21), Q

′

LLR =

1 − 1
1.2−0.7 (|QLLR| − 0.7), Q

′

SNR = 1
20QSNR, Q

′

segSNR = 1
35+2 (QsegSNR + 2).

The prediction scores of other models are already bounded in [0, 1], no further
normalization is needed.

Table 4 shows the performance of weighted product fusion models. Among
these methods, the models fused by VQA algorithms VMAF, MS-SSIM, GMSD,
and the AQA algorithms STOI, VISQOL, SNR show relatively better perfor-
mances. The model combining GMSD and STOI achieves the best performance
in terms of SRCC. In addition, with the same AQA components, the perfor-
mance of fusion models using different VQA components has little difference,
which manifests that different AQA components have larger impact on the per-
formance of fusion models. Moreover, the mean optimal weight for visual modal-
ity of 54 weighted product models is 0.7231, suggesting that visual modality has
a greater impact on QoE than audio modality.

5.3 Evaluation of SVR Fusion
SVR fusion includes two methods including the score-based fusion and the
feature-based fusion. A total of 108 (9 video models × 6 audio models × 2
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Table 4: Performances of weighted-product fusion-based A/V quality models.
The top 3 models are in bold.

Criteria
Video Weighted Product
Model PEAQ STOI VISQOL LLR SNR segSNR

SRCC

VMAF 0.5783 0.7790 0.7157 0.5745 0.7432 0.6660
WS-PSNR 0.5252 0.7348 0.6911 0.5507 0.7124 0.6658
S-PSNR 0.5182 0.7292 0.6886 0.5460 0.7068 0.6576

CPP-PSNR 0.5246 0.7333 0.6914 0.5499 0.7121 0.6652
SSIM 0.5605 0.7717 0.7289 0.5123 0.6783 0.6372

MS-SSIM 0.6131 0.7998 0.7511 0.6161 0.7596 0.6942
VIFP 0.5916 0.7746 0.7332 0.5978 0.7499 0.7017
FSIM 0.5386 0.7563 0.7259 0.5638 0.6632 0.6188
GMSD 0.6151 0.8044 0.7358 0.6246 0.7530 0.6844

PLCC

VMAF 0.6124 0.7885 0.7265 0.6324 0.7442 0.6484
WS-PSNR 0.5595 0.7576 0.7407 0.6020 0.7351 0.5960
S-PSNR 0.5558 0.7530 0.7404 0.5966 0.7287 0.5984

CPP-PSNR 0.5594 0.7567 0.7401 0.6001 0.7340 0.5931
SSIM 0.5984 0.7917 0.7604 0.5601 0.6917 0.6886

MS-SSIM 0.6405 0.8124 0.7792 0.6561 0.7710 0.7270
VIFP 0.6188 0.8057 0.7294 0.6415 0.7522 0.6758
FSIM 0.5806 0.7743 0.7682 0.6015 0.6693 0.6650
GMSD 0.6357 0.8112 0.7518 0.6557 0.7587 0.6894

Table 5: Performances of SVR fusion-based A/V quality models. The top 3
models in terms of each metric are in bold.
Criteria

Video SVR (Quality Score) SVR (Quality Feature)
Model PEAQ STOI ViSQOL LLR SNR segSNR PEAQ STOI VISQOL LLR SNR segSNR

SRCC

VMAF 0.5481 0.7855 0.7141 0.5676 0.5688 0.6391 0.8343 0.8428 0.8566 0.6052 0.6119 0.6818
WS-PSNR 0.5306 0.7625 0.6974 0.5506 0.5453 0.6269 0.8035 0.7787 0.8171 0.5612 0.5582 0.6346
S-PSNR 0.5221 0.7593 0.6966 0.5418 0.5365 0.6202 0.8030 0.7764 0.8123 0.5550 0.5476 0.6263

CPP-PSNR 0.5301 0.7626 0.6982 0.5495 0.5452 0.6272 0.8039 0.7806 0.8174 0.5612 0.5584 0.6356
SSIM 0.5023 0.7246 0.6734 0.4651 0.5636 0.6222 0.7385 0.7475 0.7654 0.5314 0.5643 0.6492

MS-SSIM 0.5809 0.7984 0.7407 0.5963 0.6020 0.6727 0.8201 0.8342 0.8654 0.6136 0.6103 0.6752
VIFP 0.5983 0.8412 0.8149 0.6149 0.6043 0.6887 0.8751 0.8726 0.8881 0.6545 0.6464 0.7311
FSIM 0.5046 0.7290 0.6775 0.4604 0.5727 0.6227 0.7485 0.7413 0.7646 0.5275 0.5603 0.6357
GMSD 0.5749 0.8048 0.7450 0.6178 0.6020 0.6669 0.8426 0.7982 0.8459 0.6084 0.5940 0.6599

PLCC

VMAF 0.5845 0.8111 0.7808 0.6275 0.6075 0.6832 0.8440 0.8543 0.8619 0.6527 0.6552 0.7303
WS-PSNR 0.5789 0.7831 0.7521 0.6125 0.5978 0.6704 0.8113 0.8012 0.8286 0.6312 0.6118 0.6919
S-PSNR 0.5703 0.7802 0.7472 0.6044 0.5895 0.6599 0.8109 0.7975 0.8229 0.6268 0.6030 0.6800

CPP-PSNR 0.5770 0.7832 0.7514 0.6115 0.5974 0.6712 0.8118 0.8026 0.8286 0.6313 0.6122 0.6930
SSIM 0.4297 0.7340 0.7125 0.4892 0.4234 0.5577 0.7656 0.7729 0.7721 0.5641 0.5674 0.6404

MS-SSIM 0.6187 0.8168 0.7874 0.6542 0.6476 0.7075 0.8350 0.8508 0.8697 0.6630 0.6632 0.7191
VIFP 0.6358 0.8565 0.8374 0.6752 0.6591 0.7382 0.8779 0.8828 0.8941 0.6950 0.6862 0.7748
FSIM 0.4275 0.7330 0.7102 0.4827 0.4298 0.5427 0.7647 0.7647 0.7676 0.5556 0.5595 0.6286
GMSD 0.6065 0.8249 0.7986 0.6564 0.6495 0.6964 0.8473 0.8170 0.8539 0.6488 0.6409 0.6889

SVR conditions) models are tested and the normalization process is no longer
required. In SVR fusion models, the radial basis function (RBF) is selected as the
kernel function, the parameter γ of the kernel function is 0.05, and the penalty
factor C is 1024. Table 5 shows the performance of SVR fusion models.

It can be observed that quality score-based SVR fusion models achieve similar
performance compared with the weighted-product fusion models, while quality
feature-based SVR fusion models achieve much better performance compared to
above two methods. The models combining the AQA components, PEAQ, STOI
and VISQOL, and the VQA components VIFP and GMSD have relatively better
performance.

Fig.5 demonstrates the performance improvement obtained by each single-
mode AQA and VQA model, which further confirms the above phenomenon. The
performance improvement of each single-mode model is calculated by averaging
the SRCC improvements of all combinations of this model with the models from
another perceptual mode. It can be observed that only VISQOL and VIFP
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Fig. 5: Performance improvements in terms of SRCC introduced by replacing
weighted-product fusion with quality score-based SVR fusion, and decomposing
quality models into features during SVR fusion.

models gain performance improvement by replacing weighted-product with SVR,
suggesting that the weighted-product fusion is generally a more feasible method.
Futhermore, Fig.5 also illustrates that it is more efficient to decompose the single-
mode VQA and AQA scores into ODVs’ quality features. It can be observed
that the feature-based regression models achieve different degrees of performance
improvement for different VQA and AQA fusion, among which PEAQ achieved
a significant improvement with nearly 50%. Some of these models, e.g., STOI,
LLR, SNR and segSNR, have a small performance progress caused by feature
extraction, we reasonably speculate that these algorithm models are not easy to
decompose.

6 Conclusion

In this work, we construct an informative omnidirectional audio-visual quality
assessment dataset, which involves 390 omnidirectional videos with ambisonics
and the corresponding perceptual scores collected from 22 participants under
immersive environment. Based on our dataset, we design three types of baseline
AVQA models which combine AQA and VQA models via two multimodal fusion
methods to predict quality scores of ODVs. Moreover, quantitative analyses for
the performance of these models are conducted to evaluate the predictive effect of
different objective models. The experiment results on our dataset show that SVR
fusion based on quality-aware features have the best performance. Our dataset,
objective baseline methods and established benchmark can great facilitate the
further research of dataset design and algorithm improvement for OAVQA.

Acknowledgement. This work is supported by National Key R&D Project
of China (2021YFE0206700), NSFC (61831015, 62101325, 62101326, 62271312,
62225112), Shanghai Pujiang Program (22PJ1407400), Shanghai Municipal Sci-
ence and Technology Major Project (2021SHZDZX0102), STCSM (22DZ2229005).



Perceptual Quality Assessment of Omnidirectional Audio-visual Signals 11

References

1. Anwar, M.S., Wang, J., Ullah, A., Khan, W., Ahmad, S., Fei, Z.: Measuring quality
of experience for 360-degree videos in virtual reality. Science China Information
Sciences 63, 1–15 (2020)

2. Duan, H., Guo, L., Sun, W., Min, X., Chen, L., Zhai, G.: Augmented reality image
quality assessment based on visual confusion theory. In: Proceedings of the IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB). pp. 1–6. IEEE (2022)

3. Duan, H., Min, X., Sun, W., Zhu, Y., Zhang, X.P., Zhai, G.: Attentive deep image
quality assessment for omnidirectional stitching. IEEE Journal of Selected Topics
in Signal Processing (JSTSP) (2023)

4. Duan, H., Min, X., Zhu, Y., Zhai, G., Yang, X., Le Callet, P.: Confusing image
quality assessment: Toward better augmented reality experience. IEEE Transac-
tions on Image Processing (TIP) 31, 7206–7221 (2022)

5. Duan, H., Shen, W., Min, X., Tian, Y., Jung, J.H., Yang, X., Zhai, G.: Develop then
rival: A human vision-inspired framework for superimposed image decomposition.
IEEE Transactions on Multimedia (TMM) (2022)

6. Duan, H., Shen, W., Min, X., Tu, D., Li, J., Zhai, G.: Saliency in augmented reality.
In: Proceedings of the ACM International Conference on Multimedia (ACM MM).
pp. 6549–6558 (2022)

7. Duan, H., Shen, W., Min, X., Tu, D., Teng, L., Wang, J., Zhai, G.: Masked au-
toencoders as image processors. arXiv preprint arXiv:2303.17316 (2023)

8. Duan, H., Zhai, G., Min, X., Zhu, Y., Fang, Y., Yang, X.: Perceptual quality
assessment of omnidirectional images. In: Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS). pp. 1–5 (2018)

9. Duan, H., Zhai, G., Yang, X., Li, D., Zhu, W.: Ivqad 2017: An immersive video
quality assessment database. In: Proceedings of the IEEE International Conference
on Systems, Signals and Image Processing (IWSSIP). pp. 1–5. IEEE (2017)

10. Fan, C.L., Hung, T.H., Hsu, C.H.: Modeling the user experience of watching 360
videos with head-mounted displays. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 18(1), 1–23 (2022)

11. Fei, Z., Wang, F., Wang, J., Xie, X.: Qoe evaluation methods for 360-degree vr
video transmission. IEEE Journal of Selected Topics in Signal Processing (JSTSP)
14(1), 78–88 (2019)

12. Fela, R.F., Pastor, A., Le Callet, P., Zacharov, N., Vigier, T., Forchhammer, S.:
Perceptual evaluation on audio-visual dataset of 360 content. In: Proceedings of the
IEEE International Conference on Multimedia and Expo Workshops (ICMEW).
pp. 1–6. IEEE (2022)

13. Fela, R.F., Zacharov, N., Forchhammer, S.: Perceptual evaluation of 360 audiovi-
sual quality and machine learning predictions. In: 2021 IEEE 23rd International
Workshop on Multimedia Signal Processing (MMSP). pp. 1–6. IEEE (2021)

14. Fela, R.F., Zacharov, N., et al.: Towards a perceived audiovisual quality model
for immersive content. In: 2020 Twelfth International Conference on Quality of
Multimedia Experience (QoMEX). pp. 1–6. IEEE (2020)

15. Hansen, J.H., Pellom, B.L.: An effective quality evaluation protocol for speech
enhancement algorithms. In: Proceedings of the Fifth International Conference on
Spoken Language Processing (1998)

16. Hines, A., Gillen, E., Kelly, D., Skoglund, J., Kokaram, A., Harte, N.: Visqolau-
dio: An objective audio quality metric for low bitrate codecs. The Journal of the
Acoustical Society of America 137(6), EL449–EL455 (2015)



12 Zhu et al.

17. Hu, Y., Loizou, P.C.: Evaluation of objective quality measures for speech enhance-
ment. IEEE Transactions on Audio, Speech, and Language Processing 16(1), 229–
238 (2007)

18. Li, C., Xu, M., Du, X., Wang, Z.: Bridge the gap between vqa and human behavior
on omnidirectional video: A large-scale dataset and a deep learning model. In:
Proceedings of the ACM International Conference on Multimedia. pp. 932–940
(2018)

19. Li, Z., Aaron, A., Katsavounidis, I., Moorthy, A., Manohara, M.: Toward a practical
perceptual video quality metric. The Netflix Tech Blog 6(2), 2 (2016)

20. Meng, Y., Ma, Z.: Viewport-based omnidirectional video quality assessment:
Database, modeling and inference. IEEE Transactions on Circuits and Systems
for Video Technology 32(1), 120–134 (2022)

21. Min, X., Zhai, G., Zhou, J., Farias, M.C., Bovik, A.C.: Study of subjective and
objective quality assessment of audio-visual signals. IEEE Transactions on Image
Processing (TIP) 29, 6054–6068 (2020)

22. Schatz, R., Sackl, A., Timmerer, C., Gardlo, B.: Towards subjective quality of expe-
rience assessment for omnidirectional video streaming. In: 2017 Ninth International
Conference on Quality of Multimedia Experience (QoMEX). pp. 1–6 (2017)

23. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Transac-
tions on Image Processing (TIP) 15(2), 430–444 (2006)

24. Sun, W., Min, X., Zhai, G., Gu, K., Duan, H., Ma, S.: Mc360iqa: A multi-channel
cnn for blind 360-degree image quality assessment. IEEE Journal of Selected Topics
in Signal Processing (JSTSP) 14(1), 64–77 (2019)

25. Sun, Y., Lu, A., Yu, L.: Weighted-to-spherically-uniform quality evaluation for
omnidirectional video. IEEE Signal Processing Letters 24(9), 1408–1412 (2017)

26. Taal, C.H., Hendriks, R.C., Heusdens, R., Jensen, J.: An algorithm for intelligibility
prediction of time–frequency weighted noisy speech. IEEE Transactions on Audio,
Speech, and Language Processing 19(7), 2125–2136 (2011)

27. Thiede, T., Treurniet, W.C., Bitto, R., Schmidmer, C., Sporer, T., Beerends, J.G.,
Colomes, C.: Peaq-the itu standard for objective measurement of perceived audio
quality. Journal of the Audio Engineering Society 48(1/2), 3–29 (2000)

28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Process-
ing (TIP) 13(4), 600–612 (2004)

29. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image
quality assessment. In: Proceedings of the Thrity-Seventh Asilomar Conference on
Signals, Systems & Computers, 2003. vol. 2, pp. 1398–1402. IEEE (2003)

30. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity devi-
ation: A highly efficient perceptual image quality index. IEEE Transactions on
Image Processing (TIP) 23(2), 684–695 (2013)

31. Yu, M., Lakshman, H., Girod, B.: A framework to evaluate omnidirectional video
coding schemes. In: Proceedings of the IEEE International Symposium on Mixed
and Augmented Reality. pp. 31–36. IEEE (2015)

32. Zakharchenko, V., Choi, K.P., Park, J.: Quality metric for spherical panoramic
video. In: Optical Engineering + Applications (2016)

33. Zhang, B., Yan, Z., Wang, J., Luo, Y., Yang, S., Fei, Z.: An audio-visual quality as-
sessment methodology in virtual reality environment. In: 2018 IEEE International
Conference on Multimedia & Expo Workshops (ICMEW). pp. 1–6 (2018)

34. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for
image quality assessment. IEEE Transactions on Image Processing (TIP) 20(8),
2378–2386 (2011)


	Perceptual Quality Assessment of Omnidirectional Audio-visual Signals

