Skip to main content

ABCD-HN: An Artificial Network Benchmark for Community Detection on Heterogeneous Networks

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2012))

  • 549 Accesses

Abstract

Community detection is essential for identifying cohesive groups in complex networks. Artificial benchmarks are critical for evaluating community detection algorithms, offering controlled environments with known community structures. However, existing benchmarks mainly focus on homogeneous networks and overlook the unique characteristics of heterogeneous networks. This paper proposes a novel artificial benchmark, called ABCD-HN (Artificial Network Benchmark for Community Detection on Heterogeneous Networks), for community detection in heterogeneous networks. This benchmark enables the generation of artificial heterogeneous networks with controllable community quantity, node quantity, and community complexity. Additionally, an evaluation framework for artificial heterogeneous networks is proposed to assess their effectiveness. Experimental results demonstrate the effectiveness and usability of ABCD-HN as a benchmark for artificial heterogeneous networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech: Theory Exp. 2005(09), P09008 (2005)

    Article  Google Scholar 

  2. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–60 (1960)

    MathSciNet  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Girvan, M., Newman, M.E.J.: Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002)

    Article  Google Scholar 

  5. Lancichinetti, A., Fortunato, S., Radicchi, F.: Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  6. Lancichinetti, A., Fortunato, S.: Phys. Rev. E 80(1), 016118 (2009)

    Article  Google Scholar 

  7. Orman, G.K., Labatut, V., Cherifi, H.: Towards realistic artificial benchmark for community detection algorithms evaluation, arXiv (2013). https://doi.org/10.1504/IJWBC.2013.054908

  8. Granell, C., Darst, R.K., Arenas, A., et al.: Phys. Rev. E 92(1), 012805 (2015)

    Article  Google Scholar 

  9. Rossetti, G.: RDyn: graph benchmark handling community dynamics (2017)

    Google Scholar 

  10. Yang, Z., Perotti, J.I., Tessone, C.J.: Phys. Rev. E 96(5), 052311 (2017)

    Article  Google Scholar 

  11. Sengupta, N., Hamann, M., Wagner, D.: Benchmark generator for dynamic overlapping communities in networks. In: 2017 IEEE International Conference on Data Mining (ICDM) (2017)

    Google Scholar 

  12. Hamann, M., Meyer, U., Penschuck, M.: et al.: I/O-efficient generation of massive graphs following the LFR benchmark (2017)

    Google Scholar 

  13. Le, B.D., Nguyen, H.X., Shen, H., et al.: GLFR: a generalized LFR benchmark for testing community detection algorithms. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9 (2017)

    Google Scholar 

  14. Muscoloni, A., Cannistraci, C.V.: Leveraging the nonuniform PSO network model as a benchmark for performance evaluation in community detection and link prediction. New J. Phys. 20(6), 063022 (2018)

    Article  Google Scholar 

  15. Pasta, Q., Zaidi, F.: Model to generate benchmark graphs based on evolution dynamics. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1223–1231 (2018)

    Google Scholar 

  16. Liu, D., Liu, G., Meng, K., et al.: Benchmark snapshots for testing social network evolving algorithms. Procedia Comput. Sci. 147, 228–232 (2019)

    Article  Google Scholar 

  17. Kamiński, B., Praat, P., Théberge, F.: Artificial Benchmark for Community Detection (ABCD): Fast Random Graph Model with Community Structure (2020)

    Google Scholar 

  18. Citraro, S., Rossetti, G.: X-Mark: a benchmark for node-attributed community discovery algorithms. Soc. Netw. Anal. Min. 11(1), 1–14 (2021)

    Article  Google Scholar 

  19. Kamiński, B., Prałat, P., Théberge, F.: Hypergraph Artificial Benchmark for Community Detection (h-ABCD), arXiv preprint arXiv:2210.15009 (2022)

  20. Meena, S.S., Tokekar, V.: A model to generate benchmark network with community structure. In: Zhang, Y.D., Senjyu, T., So-In, C., Joshi, A. (eds.) SmartCom 2022. LNNS, vol. 396, pp. 235–244. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-9967-2_23

    Chapter  Google Scholar 

  21. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 697–706 (2017)

    Google Scholar 

  22. Zhang, Y., Tang, J., Chawla, N.V.: Meta-graph based recommendation fusion over heterogeneous information networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2018)

    Google Scholar 

  23. Shi, C., Zhang, Q., Cheng, X., Cheng, J.: HeteSpaceyWalk: a general metapath based embedding framework for heterogeneous information networks. IEEE Trans. Knowl. Data Eng. 32(12), 2346–2359 (2019)

    Google Scholar 

  24. Wang, X., et al.: Heterogeneous graph attention network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 793–803 (2019)

    Google Scholar 

  25. Fu, Y., Dong, Y., Zhu, J., Hicks, Y.A., Chawla, N.V.: Deep heterogeneous network embedding with information diffusion. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1194–1203 (2019)

    Google Scholar 

  26. Liu, H., Zhao, L., Zhou, X., Li, L., Zhang, X.: HeGAN: heterogeneous graph adversarial networks for heterogeneous network representation learning. IEEE Trans. Knowl. Data Eng. 33(8), 3273–3286 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 62002063 and No. U21A20472, the National Key Research and Development Plan of China under Grant No. 2021YFB3600503, the Fujian Collaborative Innovation Center for Big Data Applications in Governments, the Fujian Industry-Academy Cooperation Project under Grant No. 2017H6008 and No. 2018H6010, the Natural Science Foundation of Fujian Province under Grant No. 2022J01118, No. 2020J05112 and No. 2020J01420, the Fujian Provincial Department of Education under Grant No. JAT190026, the Major Science and Technology Project of Fujian Province under Grant No. 2021HZ022007, the Hong Kong RGC TRS T41-603/20R and Haixi Government Big Data Application Cooperative Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Guo, K., Wu, L. (2024). ABCD-HN: An Artificial Network Benchmark for Community Detection on Heterogeneous Networks. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9637-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9636-0

  • Online ISBN: 978-981-99-9637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics