Skip to main content

How Hypergraph-to-Graph Conversion Affects Cooperative Working Visualization: A Multi-metric Evaluation

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2012))

  • 546 Accesses

Abstract

It is commonplace to use hypergraphs to represent cooperative work since hypergraphs explicitly capture complex interactions and connections, enabling researchers to analyze with ease. Nonetheless, hypergraphs are usually chaotic due to sophisticated relations between vertices. Therefore, it is necessary to look into which method prevails over other methods in specific circumstances. In our study, we propose an appraisal framework in which we use six quantitative and five qualitative metrics to assess the performance of each conversion method in terms of layout quality and effectiveness. The results show that while no method is ideal for all situations, certain methods, such as Centroid-single, perform well. Researchers can use our experiment results to select the optimal method tailored to their specific dataset and circumstances. This paper serves researchers and practitioners in choosing the most suitable conversion method for their research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arafat, N.A., Bressan, S.: Hypergraph drawing by force-directed placement, pp. 387–394 (08 2017). https://doi.org/10.1007/978-3-319-64471-4_31

  2. Bannister, M.J., Eppstein, D., Goodrich, M.T., Trott, L.: Force-directed graph drawing using social gravity and scaling. CoRR abs/1209.0748 (2012). http://arxiv.org/abs/1209.0748

  3. Di Bartolomeo, S., Pister, A., Buono, P., Plaisant, C., Dunne, C., Fekete, J.D.: Six methods for transforming layered hypergraphs to apply layered graph layout algorithms. Comput. Graph. Forum 41 (2022). https://doi.org/10.1111/cgf.14538

  4. Dogrusoz, U., Belviranli, M.E., Dilek, A.: Cise: a circular spring embedder layout algorithm. IEEE Trans. Visual Comput. Graph. 19, 953–966 (2013)

    Article  Google Scholar 

  5. Ducournau, A., Bretto, A., Rital, S., Laget, B.: A reductive approach to hypergraph clustering: An application to image segmentation. Pattern Recogn. 45, 2788–2803 (07 2012). https://doi.org/10.1016/j.patcog.2012.01.005

  6. Frickey, T., Lupas, A.: Clans: a java application for visualizing protein families based on pairwise similarity. Bioinformatics (Oxford, England) 20, 3702–4 (01 2005). https://doi.org/10.1093/bioinformatics/bth444

  7. Fuller, C.: Caste, race, and hierarchy in the american south. J. Royal Anthropol. Inst. 17, 604–621 (08 2011). https://doi.org/10.1111/j.1467-9655.2011.01709.x

  8. Gajdo, P., Ježowicz, T., Uher, V., Dohnalek, P.: A parallel fruchterman-reingold algorithm optimized for fast visualization of large graphs and swarms of data. Swarm Evol. Comput. 26 (08 2015). https://doi.org/10.1016/j.swevo.2015.07.006

  9. Ágg, B., et al.: The entoptlayout cytoscape plug-in for the efficient visualization of major protein complexes in protein-protein interaction and signalling networks. Bioinformatics (Oxford, England) 35, 4490–4492 (11 2019). https://doi.org/10.1093/bioinformatics/btz257

  10. Haleem, H., Wang, Y., Puri, A., Wadhwa, S., Qu, H.: Evaluating the readability of force directed graph layouts: a deep learning approach. CoRR abs/1808.00703 (2018), http://arxiv.org/abs/1808.00703

  11. Heer, J., Card, S., Landay, J.: Prefuse: a toolkit for interactive information visualization, pp. 421–430 (04 2005). https://doi.org/10.1145/1054972.1055031

  12. Herman, I., Melançon, G., Marshall, M.: Graph visualization and navigation in information visualization: a survey. IEEE Tran. Visual. Comput. Graph. 6, 24–43 (02 2000). https://doi.org/10.1109/2945.841119

  13. Hu, Y.: Efficient and high quality force-directed graph drawing. Math. J. 10, 37–71 (01 2005)

    Google Scholar 

  14. Jacobsen, B., Wallinger, M., Kobourov, S., Nöllenburg, M.: Metrosets: visualizing sets as metro maps. IEEE Trans. Visualization Comput. Graph. PP, 1–1 (10 2020). https://doi.org/10.1109/TVCG.2020.3030475

  15. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PloS one 9, e98679 (06 2014). https://doi.org/10.1371/journal.pone.0098679

  16. Kapec, P.: Hypergraph-based software visualization. In: International Workshop on Computer Graphics, Computer Vision and Mathematics, GraVisMa 2009 - Workshop Proceedings, pp. 149–153 (01 2009)

    Google Scholar 

  17. Kerren, A., Jusufi, I.: A novel radial visualization approach for undirected hypergraphs (01 2013). https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.025-029

  18. Kritz, M., Perlin, K.: A new scheme for drawing hypergraphs. Int. J. Comput. Math. 50(3-4), 131–134 (Jan 1994). https://doi.org/10.1080/00207169408804250, copyright: Copyright 2015 Elsevier B.V., All rights reserved

  19. Ley, M.: Dblp.uni-trier.de: Computer science bibliography. http://dblp.uni-trier.de/ (1993)

  20. Qu, B., Zhang, E., Zhang, Y.: Automatic polygon layout for primal-dual visualization of hypergraphs. CoRR abs/2108.00671 (2021). https://arxiv.org/abs/2108.00671

  21. Riche, N., Dwyer, T.: Untangling euler diagrams. IEEE Trans. Visual Comput. Graph. 16(6), 1090–1099 (2010). https://doi.org/10.1109/TVCG.2010.210

    Article  Google Scholar 

  22. Streeb, D., Arya, D., Keim, D.A., Worring, M.: Visual analytics framework for the assessment of temporal hypergraph prediction models (2019)

    Google Scholar 

  23. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, l., Su, Z.: Arnetminer: extraction and mining of academic social networks, pp. 990–998 (08 2008). https://doi.org/10.1145/1401890.1402008

  24. Thawonmas, R., Kurashige, M., Chen, K.T.: Detection of landmarks for clustering of online-game players. IJVR 6, 11–16 (01 2007)

    Google Scholar 

  25. Valdivia, P., Buono, P., Plaisant, C., Dufournaud, N., Fekete, J.D.: Analyzing dynamic hypergraphs with parallel aggregated ordered hypergraph visualization. IEEE Trans. Visualization Comput. Graph. PP, 1–1 (08 2019). https://doi.org/10.1109/TVCG.2019.2933196

  26. Yang, C., Wang, R., Yao, S., Abdelzaher, T.F.: Hypergraph learning with line expansion. CoRR abs/2005.04843 (2020). https://arxiv.org/abs/2005.04843

  27. Zhou, Y., Rathore, A., Purvine, E., Wang, B.: Topological simplifications of hypergraphs. CoRR abs/2104.11214 (2021). https://arxiv.org/abs/2104.11214

Download references

Acknowledgement

This work was supported in part by the Open Foundation of the Key lab (center) of Anhui Province Key Laboratory of Intelligent Building & Building Energy Saving (IBES2022KF03), and the Scientific and Technological Achievement Cultivation Project of Intelligent Manufacturing Institute of HFUT (IMIPY2021022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, Z., Mu, R., Yang, C., Xie, W., Lu, Q. (2024). How Hypergraph-to-Graph Conversion Affects Cooperative Working Visualization: A Multi-metric Evaluation. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9637-7_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9636-0

  • Online ISBN: 978-981-99-9637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics