Abstract
It is commonplace to use hypergraphs to represent cooperative work since hypergraphs explicitly capture complex interactions and connections, enabling researchers to analyze with ease. Nonetheless, hypergraphs are usually chaotic due to sophisticated relations between vertices. Therefore, it is necessary to look into which method prevails over other methods in specific circumstances. In our study, we propose an appraisal framework in which we use six quantitative and five qualitative metrics to assess the performance of each conversion method in terms of layout quality and effectiveness. The results show that while no method is ideal for all situations, certain methods, such as Centroid-single, perform well. Researchers can use our experiment results to select the optimal method tailored to their specific dataset and circumstances. This paper serves researchers and practitioners in choosing the most suitable conversion method for their research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arafat, N.A., Bressan, S.: Hypergraph drawing by force-directed placement, pp. 387–394 (08 2017). https://doi.org/10.1007/978-3-319-64471-4_31
Bannister, M.J., Eppstein, D., Goodrich, M.T., Trott, L.: Force-directed graph drawing using social gravity and scaling. CoRR abs/1209.0748 (2012). http://arxiv.org/abs/1209.0748
Di Bartolomeo, S., Pister, A., Buono, P., Plaisant, C., Dunne, C., Fekete, J.D.: Six methods for transforming layered hypergraphs to apply layered graph layout algorithms. Comput. Graph. Forum 41 (2022). https://doi.org/10.1111/cgf.14538
Dogrusoz, U., Belviranli, M.E., Dilek, A.: Cise: a circular spring embedder layout algorithm. IEEE Trans. Visual Comput. Graph. 19, 953–966 (2013)
Ducournau, A., Bretto, A., Rital, S., Laget, B.: A reductive approach to hypergraph clustering: An application to image segmentation. Pattern Recogn. 45, 2788–2803 (07 2012). https://doi.org/10.1016/j.patcog.2012.01.005
Frickey, T., Lupas, A.: Clans: a java application for visualizing protein families based on pairwise similarity. Bioinformatics (Oxford, England) 20, 3702–4 (01 2005). https://doi.org/10.1093/bioinformatics/bth444
Fuller, C.: Caste, race, and hierarchy in the american south. J. Royal Anthropol. Inst. 17, 604–621 (08 2011). https://doi.org/10.1111/j.1467-9655.2011.01709.x
Gajdo, P., Ježowicz, T., Uher, V., Dohnalek, P.: A parallel fruchterman-reingold algorithm optimized for fast visualization of large graphs and swarms of data. Swarm Evol. Comput. 26 (08 2015). https://doi.org/10.1016/j.swevo.2015.07.006
Ágg, B., et al.: The entoptlayout cytoscape plug-in for the efficient visualization of major protein complexes in protein-protein interaction and signalling networks. Bioinformatics (Oxford, England) 35, 4490–4492 (11 2019). https://doi.org/10.1093/bioinformatics/btz257
Haleem, H., Wang, Y., Puri, A., Wadhwa, S., Qu, H.: Evaluating the readability of force directed graph layouts: a deep learning approach. CoRR abs/1808.00703 (2018), http://arxiv.org/abs/1808.00703
Heer, J., Card, S., Landay, J.: Prefuse: a toolkit for interactive information visualization, pp. 421–430 (04 2005). https://doi.org/10.1145/1054972.1055031
Herman, I., Melançon, G., Marshall, M.: Graph visualization and navigation in information visualization: a survey. IEEE Tran. Visual. Comput. Graph. 6, 24–43 (02 2000). https://doi.org/10.1109/2945.841119
Hu, Y.: Efficient and high quality force-directed graph drawing. Math. J. 10, 37–71 (01 2005)
Jacobsen, B., Wallinger, M., Kobourov, S., Nöllenburg, M.: Metrosets: visualizing sets as metro maps. IEEE Trans. Visualization Comput. Graph. PP, 1–1 (10 2020). https://doi.org/10.1109/TVCG.2020.3030475
Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PloS one 9, e98679 (06 2014). https://doi.org/10.1371/journal.pone.0098679
Kapec, P.: Hypergraph-based software visualization. In: International Workshop on Computer Graphics, Computer Vision and Mathematics, GraVisMa 2009 - Workshop Proceedings, pp. 149–153 (01 2009)
Kerren, A., Jusufi, I.: A novel radial visualization approach for undirected hypergraphs (01 2013). https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.025-029
Kritz, M., Perlin, K.: A new scheme for drawing hypergraphs. Int. J. Comput. Math. 50(3-4), 131–134 (Jan 1994). https://doi.org/10.1080/00207169408804250, copyright: Copyright 2015 Elsevier B.V., All rights reserved
Ley, M.: Dblp.uni-trier.de: Computer science bibliography. http://dblp.uni-trier.de/ (1993)
Qu, B., Zhang, E., Zhang, Y.: Automatic polygon layout for primal-dual visualization of hypergraphs. CoRR abs/2108.00671 (2021). https://arxiv.org/abs/2108.00671
Riche, N., Dwyer, T.: Untangling euler diagrams. IEEE Trans. Visual Comput. Graph. 16(6), 1090–1099 (2010). https://doi.org/10.1109/TVCG.2010.210
Streeb, D., Arya, D., Keim, D.A., Worring, M.: Visual analytics framework for the assessment of temporal hypergraph prediction models (2019)
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, l., Su, Z.: Arnetminer: extraction and mining of academic social networks, pp. 990–998 (08 2008). https://doi.org/10.1145/1401890.1402008
Thawonmas, R., Kurashige, M., Chen, K.T.: Detection of landmarks for clustering of online-game players. IJVR 6, 11–16 (01 2007)
Valdivia, P., Buono, P., Plaisant, C., Dufournaud, N., Fekete, J.D.: Analyzing dynamic hypergraphs with parallel aggregated ordered hypergraph visualization. IEEE Trans. Visualization Comput. Graph. PP, 1–1 (08 2019). https://doi.org/10.1109/TVCG.2019.2933196
Yang, C., Wang, R., Yao, S., Abdelzaher, T.F.: Hypergraph learning with line expansion. CoRR abs/2005.04843 (2020). https://arxiv.org/abs/2005.04843
Zhou, Y., Rathore, A., Purvine, E., Wang, B.: Topological simplifications of hypergraphs. CoRR abs/2104.11214 (2021). https://arxiv.org/abs/2104.11214
Acknowledgement
This work was supported in part by the Open Foundation of the Key lab (center) of Anhui Province Key Laboratory of Intelligent Building & Building Energy Saving (IBES2022KF03), and the Scientific and Technological Achievement Cultivation Project of Intelligent Manufacturing Institute of HFUT (IMIPY2021022).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xiong, Z., Mu, R., Yang, C., Xie, W., Lu, Q. (2024). How Hypergraph-to-Graph Conversion Affects Cooperative Working Visualization: A Multi-metric Evaluation. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_15
Download citation
DOI: https://doi.org/10.1007/978-981-99-9637-7_15
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-9636-0
Online ISBN: 978-981-99-9637-7
eBook Packages: Computer ScienceComputer Science (R0)