Skip to main content

A Scholarly Information Retrieval System Incorporating Recommendation with Semantic Similarity

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2012))

Abstract

The scholarly information retrieval systems help us to access a broader range of information. However, the currently available systems do not always ensure data authenticity and real-time. To solve these problems, we propose a Scholar Think Tank System based on an actual scholar database from SCHOLAT to build a high-quality and reliable database. Our system ensures the authenticity and real-time data through data synchronization and manual information collection from scholars not registered to SCHOLAT. In addition, users may be interested in scholars based more on common research content, which reminds us that we need to pay attention to the similarity between scholars. With this inspiration, we have developed a semantic similarity-based scholar recommendation service. We use the pre-training language model SBERT to calculate the similarity between scholars through their profiles and devise an incremental update algorithm to reduce the use of computing resources. Our system has been developed and online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bastopcu, M., Ulukus, S.: Who should google scholar update more often? In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 696–701. IEEE (2020)

    Google Scholar 

  2. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: SemEval-2017 task 1: semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint arXiv:1708.00055 (2017)

  3. Chen, Y., Ding, C., Hu, J., Chen, R., Hui, P., Fu, X.: Building and analyzing a global co-authorship network using google scholar data. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 1219–1224 (2017)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. Dong, L., et al.: Unified language model pre-training for natural language understanding and generation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  6. Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: Proceedings of the 24th International Conference on World Wide Web, pp. 278–288 (2015)

    Google Scholar 

  7. Fan, W., Derr, T., Ma, Y., Wang, J., Tang, J., Li, Q.: Deep adversarial social recommendation. arXiv preprint arXiv:1905.13160 (2019)

  8. Fan, W., et al.: Graph neural networks for social recommendation. In: The World Wide Web Conference, pp. 417–426 (2019)

    Google Scholar 

  9. Fan, W., Ma, Y., Yin, D., Wang, J., Tang, J., Li, Q.: Deep social collaborative filtering. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 305–313 (2019)

    Google Scholar 

  10. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 2333–2338 (2013)

    Google Scholar 

  11. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the fourth ACM Conference on Recommender Systems, pp. 135–142 (2010)

    Google Scholar 

  12. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2020)

    Article  Google Scholar 

  13. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)

  14. Liu, J., Ren, J., Zheng, W., Chi, L., Lee, I., Xia, F.: Web of scholars: a scholar knowledge graph. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2153–2156 (2020)

    Google Scholar 

  15. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  16. Lopes, G.R., Moro, M.M., Wives, L.K., de Oliveira, J.P.M.: Collaboration recommendation on academic social networks. In: Trujillo, J., Dobbie, G., Kangassalo, H., Hartmann, S., Kirchberg, M., Rossi, M., Reinhartz-Berger, I., Zimányi, E., Frasincar, F. (eds.) ER 2010. LNCS, vol. 6413, pp. 190–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16385-2_24

    Chapter  Google Scholar 

  17. May, C., Wang, A., Bordia, S., Bowman, S.R., Rudinger, R.: On measuring social biases in sentence encoders. arXiv preprint arXiv:1903.10561 (2019)

  18. Qiao, Y., Xiong, C., Liu, Z., Liu, Z.: Understanding the behaviors of BERT in ranking. arXiv preprint arXiv:1904.07531 (2019)

  19. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

  20. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 101–110 (2014)

    Google Scholar 

  21. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MASS: masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450 (2019)

  22. Tang, F., Zhu, J., He, C., Fu, C., He, J., Tang, Y.: SCHOLAT: an innovative academic information service platform. In: Cheema, M.A., Zhang, W., Chang, L. (eds.) ADC 2016. LNCS, vol. 9877, pp. 453–456. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46922-5_38

    Chapter  Google Scholar 

  23. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008)

    Google Scholar 

  24. Tang, J., Hu, X., Liu, H.: Social recommendation: a review. Soc. Netw. Anal. Min. 3, 1113–1133 (2013)

    Article  Google Scholar 

  25. Thelwall, M., Kousha, K.: ResearchGate articles: age, discipline, audience size, and impact. J. Am. Soc. Inf. Sci. 68(2), 468–479 (2017)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Walters, W.H.: Google scholar coverage of a multidisciplinary field. Inf. Process. Manage. 43(4), 1121–1132 (2007)

    Article  Google Scholar 

  28. Yan, W., Zhang, Y., Hu, T., Kudva, S.: How does scholarly use of academic social networking sites differ by academic discipline? A case study using researchgate. Inf. Process. Manage. 58(1), 102430 (2021)

    Article  Google Scholar 

  29. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: Generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  30. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evaluating text generation with bert. arXiv preprint arXiv:1904.09675 (2019)

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China No. U1811263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronghua Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lan, Y., Lin, R., Mao, C. (2024). A Scholarly Information Retrieval System Incorporating Recommendation with Semantic Similarity. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9637-7_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9636-0

  • Online ISBN: 978-981-99-9637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics