Abstract
The goal of fine-grained image description generation techniques is to learn detailed information from images and simulate human-like descriptions that provide coherent and comprehensive textual details about the image content. Currently, most of these methods face two main challenges: description repetition and omission. Moreover, the existing evaluation metrics cannot clearly reflect the performance of models on these two issues. To address these challenges, we propose an innovative Fine-grained Image Description Generation model based on Joint Objectives. Furthermore, we introduce new object-based evaluation metrics to more intuitively assess the model’s performance in handling description repetition and omission. This novel approach combines visual features at both the image level and object level to maximize their advantages and incorporates an object penalty mechanism to reduce description repetition. Experimental results demonstrate that our proposed method significantly improves the CIDEr evaluation metric, indicating its excellent performance in addressing description repetition and omission issues.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
Chatterjee, M., Schwing, A.G.: Diverse and coherent paragraph generation from images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 729–744 (2018)
Chen, Y.-C., et al.: UNITER: UNiversal image-TExt representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 104–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_7
Denkowski, M., Lavie, A.: Meteor universal: Language specific translation evaluation for any target language. In: Proceedings of the ninth workshop on statistical machine translation. pp. 376–380 (2014)
Desai, K., Johnson, J.: Virtex: learning visual representations from textual annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11162–11173 (2021)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pPre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Guo, D., Lu, R., Chen, B., Zeng, Z., Zhou, M.: Matching visual features to hierarchical semantic topics for image paragraph captioning. Int. J. Comput. Vision 130(8), 1920–1937 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ilinykh, N., Dobnik, S.: When an image tells a story: the role of visual and semantic information for generating paragraph descriptions. In: Proceedings of the 13th International Conference on Natural Language Generation, pp. 338–348 (2020)
Kanani, C.S., Saha, S., Bhattacharyya, P.: Improving diversity and reducing redundancy in paragraph captions. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
Krause, J., Johnson, J., Krishna, R., Fei-Fei, L.: A hierarchical approach for generating descriptive image paragraphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 317–325 (2017)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123, 32–73 (2017)
Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: a universal encoder for vision and language by cross-modal pre-training. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11336–11344 (2020)
Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei, F., et al.: Oscar: Object-semantics aligned pre-training for vision-language tasks. In: Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part 16. pp. 121–137. Springer (2020)
Liang, X., Hu, Z., Zhang, H., Gan, C., Xing, E.P.: Recurrent topic-transition gan for visual paragraph generation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3362–3371 (2017)
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, D., Zha, Z.J., Zhang, H., Zhang, Y., Wu, F.: Context-aware visual policy network for sequence-level image captioning. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1416–1424 (2018)
Melas-Kyriazi, L., Rush, A.M., Han, G.: Training for diversity in image paragraph captioning. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 757–761 (2018)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)
Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert: a joint model for video and language representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7464–7473 (2019)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)
Wang, J., Pan, Y., Yao, T., Tang, J., Mei, T.: Convolutional auto-encoding of sentence topics for image paragraph generation. arXiv preprint arXiv:1908.00249 (2019)
Wang, P., et al.: Ofa: unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework. In: International Conference on Machine Learning, pp. 23318–23340. PMLR (2022)
Wang, Z., Yu, J., Yu, A.W., Dai, Z., Tsvetkov, Y., Cao, Y.: Simvlm: simple visual language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904 (2021)
Wu, S., Zha, Z.J., Wang, Z., Li, H., Wu, F.: Densely supervised hierarchical policy-value network for image paragraph generation. In: IJCAI, pp. 975–981 (2019)
Xu, C., Li, Y., Li, C., Ao, X., Yang, M., Tian, J.: Interactive key-value memory-augmented attention for image paragraph captioning. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 3132–3142 (2020)
Yang, H., Lin, J., Yang, A., Wang, P., Zhou, C., Yang, H.: Prompt tuning for generative multimodal pretrained models. arXiv preprint arXiv:2208.02532 (2022)
Zhang, P., et al.: Vinvl: revisiting visual representations in vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5579–5588 (2021)
Acknowledgment
This work is supported by the National Natural Science Foundation of China (No. 62076210, No. 81973752 ), the Natural Science Foundation of Xiamen city (No. 3502Z20227188) and the Open Project Program of The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions, Wuyi University (No. KLCCIIP2020203)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, Y., Lin, C., Cao, D., Lin, D. (2024). A Fine-Grained Image Description Generation Method Based on Joint Objectives. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_3
Download citation
DOI: https://doi.org/10.1007/978-981-99-9637-7_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-9636-0
Online ISBN: 978-981-99-9637-7
eBook Packages: Computer ScienceComputer Science (R0)