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Abstract: The existing methods ignore the adverse effect of knowledge graph incompleteness on

knowledge graph embedding. In addition, the complexity and large-scale of knowledge informa-

tion hinder knowledge graph embedding performance of the classic graph convolutional network.

In this paper, we analyzed the structural characteristics of knowledge graph and the imbalance

of knowledge information. Complex knowledge information requires that the model should have

better learnability, rather than linearly weighted qualitative constraints, so the method of end-to-

end relation-enhanced learnable graph self-attention network for knowledge graphs embedding

is proposed. Firstly, we construct the relation-enhanced adjacency matrix to consider the incom-

pleteness of the knowledge graph. Secondly, the graph self-attention network is employed to

obtain the global encoding and relevance ranking of entity node information. Thirdly, we pro-

pose the concept of convolutional knowledge subgraph, it is constructed according to the entity

relevance ranking. Finally, we improve the training effect of the convKB model by changing the

construction of negative samples to obtain a better reliability score in the decoder. The experi-

mental results based on the data sets FB15k-237 and WN18RR show that the proposed method

facilitates more comprehensive representation of knowledge information than the existing meth-

ods, in terms of Hits@10 and MRR.

Keywords: knowledge graph embedding; relation-enhanced; convolutional knowledge subgraph;

construction of negative samples.
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Figure 1: The local knowledge graph.

1 Introduction

The knowledge graph plays an indispensable role in the semantic network, and can benefit many

downstream applications, such as personalized recommendation [1] and question answering [2].

knowledge information is represented by a network structure consisting of triples, in which nodes

refers to entity information and connection edges represent multi-relation information among

entities [3, 4], as shown in Fig.1. However, the symbolic of graph struction cannot be processed

by machine learning, which leads to problem of insufficient utilization and analysis of knowledge

base information. Therefore, the knowledge graph embedding plays an important role in the

analysis of knowledge information, it aims to convert the knowledge information of the graph

structure into a low-dimensional dense vector representation.

The knowledge graph is the semantic network graph describing various entities (or concepts)

and relations in the real world. Each node in the graph represents an entity that is connected by

various relation information to form different knowledge information. We analyzed knowledge

information and general graph structure data, and there are obvious differences between knowl-

edge graph and general graph structure data. The main points are as follows:

• Different knowledge information assigned by triples has different effects on entities. For ex-

ample, the entity “Yao Ming” has different triples:(Yao Ming, Profession, basketball player)

and (Yao Ming, wife, Ye Li). The knowledge of “Yao Ming” represents the global infor-

mation related to it, but each entity will have a different impact on “Yao Ming”, of which

“basketball players” have a greater impact.

• Knowledge graph connects diverse knowledge information through the complex relation
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network. Compared with the simplified connection edges of general graph structure data,

the degree of correlation between entities is much related to the relation category. However,

even the same relation category has different effects on different entity information. For

example, the “father-son” relation exerts different influence on entity “Qianlong” and “Yao

Ming”.

• The way of construction of knowledge graph determines the incompleteness of knowledge

information, and the incompleteness of the knowledge graph will have a very terrible influ-

ence on the knowledge graph embedding.

To sum up, the complexity of such graphs demonstrates that the classical graph convolution

network cannot handle knowledge information well.

In view of the above analysis, this paper proposes the end-to-end relation-enhanced learnable

graph self-attention network for knowledge graphs embedding. First, we construct the relation-

enhanced adjacency matrix. Secondly, the correlation between entity nodes is calculated by graph

self-attention network, and the global encoding of the central entity node is obtained by weight-

ed summation. And then, K neighboring nodes with the greatest correlation are selected as the

knowledge subgraph, and the multi-layer convolution operation is embedded in the graph convo-

lution process to obtain the entity encoding representation. Furthermore, the relational encoding

representation is obtained by modeling the relational information, and the entity encoding and

the relational encoding are combined to form the triple knowledge encoding. Finally, we im-

proved the training effect of the convKB model by changing the construction of negative samples

to obtain a better credibility score in the decoder.

The main contributions of the paper are presented in the following aspects:

1. We constructed a relation-enhanced learnable graph self-attention network, which is more

in line with the complexity and diversity of knowledge information.

2. Based on the relevant ranking of entities, we put forward the concept of convolutional

knowledge subgraphs, adding multi-layer convolutional networks into the aggregation pro-

cess of graph convolutional networks, so that increase the learnability of the model.

3. We improved the training effect of the ConvKB model by changing the construction of

negative samples to obtain a better credibility score in the decoder.
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2 Related Work

The existing knowledge graphs embedding method is mainly based on the idea that the relation-

ship is a transformation between entities. Bordes et al[5] proposed the TransE model based on

the idea that the head entity could get the tail entity through the translation of the relationship

information, which learned the embedding matrix of the entity and the relationship respective-

ly. In subsequent studies, researchers proposed TransH [6], TransR [7], TransD [8], KG2E [9],

TranSparse [10] by extending the embedding space of entities and relationships. Ebisu et al.

changed the embedded space to sphere to obtain more comprehensive entity and relation embed-

ding through spherical space [11]. Sun et al. defined the relationship as the rotation from head

entity to tail entity, which increased the complexity of feature space in relation translation and

obtained the knowledge graphs embedding in complex space [12]. However, these methods only

model the characteristics of entities and relationships by constructing complex feature spaces,

without considering the global structure information and incompleteness of the knowledge graph.

We focus more on recent research results on knowledge graphs embedding. The researchers

used neural networks to capture more feature interactions between embeddings,respectively pro-

posed the ConvE model [13], ConvKB model [14] and the InteractE model [15], which trained

the knowledge embedding matrix through the credibility score function, and thus improves the

expressiveness. Trouillon et al. deal with various binary relations through the combination of

complex embedding [16]. Cai et al. used the generative adversarial network to improve the quali-

ty of negative samples and improve the learning effect of the model [17]. Recently, the graph con-

volutional networks are widely used in knowledge graph embedding, It has very well advantages

for graph structure data [18, 19, 20, 21]. Shang et al. proposed to extend the ConvE model by

using graph convolution network, maintaining the transformation characteristics between entities

and relationships [22]. Many recent methods devote to preserving the symmetry and antisymme-

try properties of relations to improve the expressiveness of embeddings [23, 24, 25, 26]. Chen et

al. and Zhang et al. combined the bidirectional influence between entities and relationships by

considering relationship edge information [27, 28]. Hamilton et al. embedded the logical query

information of knowledge information into the knowledge graphs embedding by performing the

logical operation in the low-dimensional embedded space [29]. However, the above methods do

not take into account that compared with the general graph structure information, the knowledge

information is imbalanced, so that the classic graph convolutional network cannot process the

knowledge information well. In addition, the complexity of knowledge determines that models

need better learnability, rather than linearly weighted qualitative constraints.
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Figure 2: Knowledge encoder based on the relation-enhanced learnable graph self-attention net-

work.

3 Our Approach

In this paper, we proposed the method of end-to-end relation-enhanced learnable graph self-

attention network for knowledge graphs embedding. The method consists of two modules, which

are knowledge encoder of relation-enhanced learnable graph self-attention network and the knowl-

edge decoder of the reconstructing the negative sample.

3.1 Knowledge Encoder of the Relation-Enhanced Learnable Graph Self-

attention Network

The knowledge graph is the semantic network graph describing various entities (or concepts) and

relations in the real world. Each node in the graph represents an entity that is connected by var-

ious relation information to form different knowledge information. We analyzed the difference

between knowledge information and general graph structure data. The interconnection and in-

teraction of knowledge information caused each triple to affect the central entity differently. The

complexity of knowledge graphs indicates that classical graph convolutional networks cannot

handle knowledge information well. To this end, this paper proposes a knowledge information

encoder that relation-enhanced learnable graph self-attention network, as shown in Fig.2.

The relation-enhanced learnable graph self-attention network is the extension of the classical

GCN model. As Fig.2 shows, this model consists of multi-head self-attention layer and knowl-

edge convolutional sublayer. It can assigns weights to each entity node according the influence

degree of knowledge information, which is line with the characteristics of unequal knowledge in-
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formation. The construction of convolutional knowledge subgraphs can increase the multi-level

convolution operation in the process of graph aggregation. Compared with the classical graph

convolution model, the feature extraction ability and learn ability of the model are improved. As

well as, we construct the relation-enhanced adjacency matrix for the incompleteness of the knowl-

edge graph. For each entity node in the graph, the entity node representation from the previous

layer is used as input in the current layer network. The entity representation matrix of output is

obtained through the relation-enhanced self-attention network of learnable graphs:

HL
m = GKConv(AHLWconv) (1)

Where A is relation-enhanced adjacency matrix of knowledge graph; HL ∈ Rn×FL

is the entity

representation matrix of the L layer learnable graph self-attention network, where FL is the entity

representation dimension; Wconv is the trainable parameter matrix

In order to avoid the adverse effect of incompleteness of knowledge graph on knowledge

representation, we added indirect relationship attributes between entities in the adjacency matrix.

We defined indirect relationship attributes including vertical indirect relationship and horizontal

indirect relationship. The vertical indirect relationship means that the entities are in the same

relationship path, as shown in Fig.3. There are triples in the knowledge base: (Kobe, players,

Lakers), (Lakers, teams, NBA), the two triples are connected together through the relationship

path, then ”Kobe” and ”NBA” have an indirect relationship, we call it is the vertical indirect

relationship. The horizontal indirect relationship refers to the existence of cross entities between

entities. As shown in Fig.3, there are triples in the knowledge base: (Kobe, players, Lakers),

(Kobe, teammates, Gasol), then there is an indirect relationship between ”Gasol” and ”Lakers”,

we call this it is the horizontal indirect relationship. The formula for calculating the indirect

relationship index is:

ri j = (
1

2
)(k−1)(

1

2
)p (2)

Where k is the relationship path length; p is the horizontal indirect number. When there are

multiple paths between two entities, take the shortest path. In this paper, we stipulate that there

can only be one relationship between entity pairs. We do not calculate the indirect relationship

attributes between directly adjacent entities. In this way, we construct the relation-enhanced

adjacency matrix A:

A =



























1 direct relationship

ri j indirect relationship

0 no relationship

(3)
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Figure 3: The indirect relationships of the knowledge graph.

For the relation-enhanced learnable graph self-attention network, as shown in Fig.2, the high-

level feature representation of entities in the knowledge graph is extracted through the convolu-

tional neural network:

H1
= conv(e1, e2, · · · , en) (4)

Where conv is the convolutional operation; ei is the input characteristic of the i − th entity; n

is the entity number in the knowledge graph. Through the CNN model to obtain the input matrix

of the entity representation H1. In this paper, the feature representation of an entity consists of

relationships and entities that are directly connected to the entity. It can be expressed as:

ei = {w
i
1,w

i
2, · · · ,w

i
m} (5)

Where wi
j

refers to the entity or relation directly adjacent to entity ei. In this paper, m=50,

(EMP is used to make up the deficiency). The classical graph convolutional neural network

(GCN) assigns the same weight to the adjacent nodes, and obtains the representation of the central

node by aggregating the feature representations of adjacent nodes. For the knowledge graph, the

same relation category exerts different influences on different entity information. Through graph

self-attention mechanism to obtain the attention weights between different entities:

ei j = σ(hL
i , h

L
j ) (6)

Where hL
i ∈ R(FL) and hL

j ∈ R(FL) are the feature representation of entities ei and e j at the layer

L of the relation-enhanced learnable graphs self-attention network; σ function is the feedforward
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neural network of single layers with LeakyReLU as the activation function (negative input slope

α = 0.2). Attention weights between entity nodes are obtained through the normalization of

scores calculated by single-layer feedforward neural network:

ai j =

exp(LeakyReLU(WT
a [hL

i ||h
L
j ]))

∑

g∈Ni
exp(LeakyReLU(WT

a [hL
i
||hL

g]))
(7)

Where WT
a ∈ R2FL

is the weight matrix of feedforward neural network; || is the connection

operation of vectors. At here form a relevance matrix P ∈ Rn×n, Pi j = ai j. Through aggregation

of the neighboring entities to obtain the entity node representation of the fusion graph structure

information:

h
′

i = σ(
∑

g∈Ni

ai jh
L
j ) (8)

Where Ni is the adjacency nodes set of entity ei. In this paper, we constructed the relation-

enhanced adjacency matrix A of knowledge graph, which reduces the negative effects of incom-

plete knowledge graph on knowledge representation. In the meanwhile, in view of the large

amount of entity nodes in the graph, this paper makes references to Literature [30] with the multi-

head self-attention mechanism, in order to acquire a better and more stable representation of

entity. The final encoding representation of entity nodes is obtained by connection the feature

vectors of each attention:

hi = concate(||Sk=1σ(
∑

g∈Ni

ak
i jh

L
j )) (9)

Where concate is the connection operation of vectors; S is the number of self-attention mech-

anism.

In the knowledge graph, the connection of each entity can reflect the semantic information of

the entity. We hope to use convolutional neural networks to extract the connection information

of each entity, but due to the different connection conditions of each entity, it is impossible to

directly convolve the entity information in the knowledge graph. So we construct a convolution-

al knowledge subgraph, so that the convolution operation can be performed on the aggregated

entity representation. As shown in Figure 4, In order of relevance, the convolutional knowledge

subgraph of the entity ”Kobe” is [”Laker”, ”Gasol”, ”NBA”]. By performing the convolution

operation on the convolutional knowledge subgraph, its characteristic representation is obtained.

we first extract the T entities with the most relevance for each entity through the correlation

matrix P obtained, and construct a convolutional knowledge subgraph:

Hc = g(H,W,T ) (10)
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Figure 4: Construction of convolutional knowledge subgraph.

W = A · P (11)

P =

∑

i∈S Pi

S
(12)

Where g refers to the construction function of convolutional knowledge subgraph; P refers

to the correlation obtained by the multi-head self-attention mechanism. In this paper, P is the

average value of each self-attention mechanism; S is the number of self-attention mechanisms;

T refers to the number of neighboring nodes with the greatest correlation, and if the neighboring

node is less than T , then empty entity < EMP > is adopted for supplement; A refers to the

relation-enhanced adjacent matrix of the knowledge graph; Through matrix point multiplication

to obtain the final relevance matrix W of adjacent nodes. And then obtain the entity representation

through the convolutional neural network:

HL+1
= conv(W1Hc + b1) (13)

Where conv is the convolutional operation; W1 and b1 are convolution layer parameters;

Hc ∈ Rn×T×m is the knowledge subgraph of entity. The convolution operation is performed on

the convolutional knowledge subgraph to obtain an entity representation matrix HL+1 ∈ Rn×FL+1

as the output. In this process, we construct a convolutional knowledge subgraph, realizing the

convolution operation in the graph convolution network, and reduce the model parameters. At

the same time, the multi-layer convolution network can be embedded in the process of entity n-

ode information aggregation according to the graph structure, which improves the representation

ability of the classic graph convolution network.
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The knowledge graph embedding refers to the representation of entities and relationships.

This paper holds the view that relations are manifested in the entity information. For exam-

ple, with the father-son relation, people always think of Kangxi, Yongzheng and Yongzheng,

Qianlong. Therefore, the relational embedding matrix is constructed with the idea that entity in-

formation can explain and reflect the relation information. First of all, the embedding matrix H

of entities is employed to search the entity pairs corresponding to each relation category respec-

tively. In this paper, 20 entities are selected as the information representation text according to

each relationship category (EMP is used to make up the deficiency). The representation of each

category is obtained by convolutional neural network:

Ri = conv(WrXi + br) (14)

Where conv is the convolution operation; Xi is the information feature representation of the

i-th relation category, composed of representations of entity pairs directly connected with relation

categories (the entity representation of EMP is obtained by initialization); Wr and br are the

parameter of convolutional neural network; Ri is the feature representation of the i − th relation

category. According to Equation 14, the relational embedding matrix R is obtained. Then the

entity embedding matrix H is combined with the relation embedding matrix R to obtain the

embedding matrix U of knowledge representation with the final encoding.

To sum up, the paper proposes a relation-enhanced learnable graph self-attention network

model. The description of algorithm is expressed as follows Table 1.

3.2 Knowledge Decoder of the Improving Construction Negative Samples

Knowledge graph is a network structure composed of triples, and the decoder aims to define a

reliability score function f, so that make the score of positive triples higher than the score of

negative triples.

The embedding representation Ui = [vh
i
, vr

i , v
t
i
] ∈ R3×d of knowledge information is obtained

based on the relation-enhanced learnable graphs self-attention network, where vh, vr, vt are the

representations of head entity, relation and tail entity of knowledge triples and d is the dimension.

Convolution operation is conducted for each dimension of the vector representation of knowledge

triples:

vi = conv(WUi,: + b) (15)

Where Ui,: ∈ R3×1 is the i − th dimensional representation of triple; convolutional kernel is

W ∈ R(3×1); conv function refers to the convolution operation, which is adopted to obtain the i−th

10



Table 1: Algorithm of relation-enhanced learnable graph self-attention network

Input: Input characteristic matrix of entity

(E = [e1, e2, · · · , en]), representation text of relational

information (X), relation-enhanced adjacency matrix (A),

size of knowledge subgraph (T ), Number of self-attention

mechanisms(S ), Number of network layers (N).

Output: representation matrix of knowledge encoding(U)

Obtained entity representation matrix:

H1 → H1
= conv(e1, e2, · · · , en).

For L in range (N):

For k in range(S ):

Calculate correlation weights between entities:

ak
i j
→ ak

i j
=

exp(LeakyReLU(WT
a,k

[hL
i
||hL

j
]))

∑

g∈Ni
exp(LeakyReLU(WT

a,k
[hL

i
||hL

g ]))

Entity nodes are aggregated :

h
′

i,k → h
′

i,k = σ(
∑

g∈Ni
ak

i j
hL

j )

Splicing of entity representation:

hi → hi = concate(h
′

i,1, h
′

i,2, · · · , h
′

i,s)

Constructing a convolutional knowledge subgraph:

Hc → Hc = g(H,W,T )

Obtained entity output representation:

HL+1 → HL+1
= conv(W1Hc + b1)

Obtained relation representation: Ri → Ri = conv(WrXi + br)

Obtain the knowledge representation: U → U = [HN ,R]

Return (U)

dimensional representation of triples. Perform repeated convolution of triples in each dimension.

In order to maintain the conversion properties of the triplet, for the knowledge representation after

the convolution, it is to choose the connection operation instead of reshaping:

v = [v1, v2, · · · , vd] (16)

Where v ∈ R1×d is the feature representation of triples after convolution. Such connection op-

eration not only extracts the global feature information of triples, but also maintains the transfor-

mation characteristics of triples. In order to acquire more abundant feature information, different

convolution kernels are set to achieve the multi-channel convolution operation:

vτi = conv(WτUi,: + bτ) (17)
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Where Wτ and bτ is the convolution layer parameters of the τ − th convolutional channel.

The triple feature representation of each channel is connection to obtain the triple representation

Vi = [v1, v2, · · · , vt] ∈ R(1 × td), where t is the number of convolution channels. The reliability

score of triple is calculated:

f (Ui) = σ(WzVi + bz) (18)

Where Wz and bz is the full connection layer parameters. In this paper, we improved the

training effect of negative samples on the convKB model by changing the construction of negative

samples to obtain a better reliability score in the decoder. The negative samples are updated

according to the reliability score after each iteration:

f (U
′

i ) = σ(WzV
′

i + bz) (19)

Where U
′

i is a negative sample triple for Ui, the U
′

i = (h
′

, r, t
′

) ∈
{

(h
′

, r, t)|h
′

∈ ε, h
′

, h
}

∪

{

(h, r, t
′

)|t
′

∈ ε, t
′

, t
}

,

there refers to the entity set. With construction of negative samples, the random replacement

method for head entity or tail entity is adopted in order to prevent the occurrence of simultaneous

replacement of head entities and tail entities that are still positive samples. For the calculation of

the negative sample score, the same weight matrix Wz and bz is employed with no consideration

of model loss and upgradation of model parameters. The triple with the highest reliability score

is selected as the negative samples:

U
′

i = max( f (U
′

1), f (U
′

2), · · · , f (U
′

q)) (20)

Where q is the number of constructed negative samples. The triple with the highest reliability

score is chosen as the negative sample to participate in the next iteration training of the model.

After each iteration, the negative samples are updated according to reliability score. With an

aim to improve the calculation efficiency, randomly select 100 negative samples for each positive

sample, and then the triple with the highest reliability score is used as the final negative sample.

The model parameters are trained with the loss function:

ι =
∑

U∈ξ
∪

ξ
′

log(1 + exp(g(U) f (U))) +
λ

2
||W ||22 (21)

A =















−1 U ∈ ξ

1 U
′

∈ ξ
′ (22)

Where ξ, ξ
′

refer to the set of positive and negative samples respectively. The parametric

matrix W of the model is regularized by L2. Based on the optimization of loss function, the

reliability score of positive triples are higher than that of negative triples. By optimizing the

embedding matrix of knowledge representation for the relation-enhanced learnable graphs self-

attention network, a higher quality knowledge embedding can be obtained.
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4 Experiment

4.1 Experiment Data

This paper verification the effectiveness of the present approach based on two benchmark data

sets: WN18RR [13] and FB15k-237 [15], which are the subsets of WN18 [5] and FB15k [5]

respectively. The data set WN18RR consists of 40943 entities and 11 kinds of relation categories,

the training set, validation set and test set contain 86835, 3034 and 3134 triples respectively. The

data set FB15k-237 is composed of 14541 entities and 237 relation categories, there exist 272115,

17535 and 20466 triples in the training set, validation set and test set. The data sets WN18 and

FB15k include many reversible relationships, which enable to predict triples easily. In the data

sets of WN18RR and FB15k-237, the influence of reversible relationships be removed for a more

authentic knowledge representation and the knowledge base completion.

4.2 Experimental Evaluation Criteria

In this paper, the experimental results of entity linking prediction are used to verify the effective-

ness of the proposed method, and the prediction results are obtain according the reliability score

function f on the triples of test set. During the testing process, this paper refers to the filtering

protocol in Literature [5]. For each test triple, a group of negative triples is constructed through

the random replacement of head entity and tail entity.

The present paper employs three benchmark evaluation indicators MR, MRR and Hits@10

to evaluate the effectiveness of the proposed method. The MR represents the average value of

the correct label ranking in the probability distribution vector, and the smaller the value, the

better. The MRR represents the average value of the reciprocal of the correct label ranking in the

probability distribution vector, and the larger the value, the better. The Hits@10 represents the

probability that the correct label rank in the top ten, and the larger the value, the better.

4.3 Setting of Experimental Parameters

In this paper, for experimental parameter settings, the output vector of convolution layer is set to

be 64 dimensions; The number of convolution kernels is set to be 500 with the dropout of 0.6; The

number of negative samples constructed by each positive sample in this paper is 100 and Select

the one with the maximum reliability score as the negative sample; In the training process for

end-to-end model, Adam optimizer is used to set the learning rate of 0.0001 and the parametric

13



Table 2: Experimental results of different sizes (T) of knowledge subgraphs

T MR MRR Hits@10

10 346 0.341 52.5

20 323 0.353 54.9

30 304 0.367 55.6

40 272 0.376 56.1

50 311 0.370 56.3

regularization ratio is 0.001. The batch size set is 128 and the number of epoch is 800.

4.4 Experimental Results and Analysis

Experiment 1: In order to verify the effects of the size T (select the number of adjacent nodes with

the greatest correlation) of convolutional knowledge subgraphs on the results of entity linking

prediction, the size T of knowledge subgraphs at 10, 20, 30, 40 and 50 is tested on the result of

entity linking prediction. Table 2 shows the effect of different sizes of knowledge subgraphs on

the experimental results to verify the optimal size T of knowledge subgraphs:

As the experimental results in Table 2, the size of the knowledge subgraph increases, each

evaluation indicators of the experimental results has been improved accordingly. According to

the results, when T=40, achieve the best experimental results. One possible reason is that the size

of the knowledge subgraph increases, more adjacent entity node information can be utilized, and

convolution can obtain the richer feature representation of knowledge subgraph. But since our

knowledge subgraphs are structured by relevance sort, when the knowledge subgraph reaches a

certain level, the less relevant entity node information is likely to generate redundant information

to the central entity, which will have a bad effect.

Experiment 2: In order to verify the effect of different numbers of self-attention mechanisms

(h) on the results of entity linking prediction, the number of self-attention mechanisms (h) is

selected to 1, 2, 4, 6, 8 and 10, so that comparative experiment of entity linking prediction can be

performed. Table 3 below presents the effect of the number of different self-attention mechanism

on the experimental results to verify the optimal number of self-attention mechanisms:

As the experimental results in table 3, the number (h) of attention mechanisms increases, each

evaluation indicators of the experimental results has been improved accordingly. At the same

time, according to the experimental results, whenh=10, achieve the best experimental results.

One possible reason is that the number (h) of attention mechanisms increases, a better and more
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Table 3: Comparative experimental results of different numbers (h) of self-attention mechanisms

h MR MRR Hits@10

1 359 0.347 53.1

2 329 0.349 53.7

4 321 0.358 54.6

6 305 0.366 55.3

8 307 0.370 55.8

10 272 0.376 56.1

Table 4: Comparative experimental results of different methods

Method MR MRR Hits@10

convKB [14] 257 0.396 51.7

GConKB 376 0.337 53.4

R-GATKB-N 272 0.376 56.1

stable of the features representation can be obtained.

Experiment 3: In order to verify the effect of adding knowledge encoder on the results of

knowledge representation, this experiment adopts FB15k-237 data set and conducts a comparative

analysis of convKB model, GCN + convKB model (GConKB) and relation-enhanced learnable

graph self-attention network + convKB model (R-GATKB-N). Table 4 shows the experimental

results with different methods to verify the effectiveness of end-to-end frameworks:

As the experimental results in table 4, the addition of knowledge encoder based on GCN,

exerts minor influence on the knowledge representation quality. Only Hits@10 indicator has

been improved, while MR and MRR indicators have decreased. The improvement of Hits@10

indicator shows the increasing number of high-quality knowledge representation, but the decrease

of MRR indicators means some triples are poorly presented. In this regard, indication is made

that the addition of knowledge encoding part and the consideration of graph struction information

can enhance the quality of knowledge representation yet with less obvious effect. Compared

with the classical GCN model, there is an apparent increase in terms of the indicators of MRR,

Hits@10, etc. based on the relation-enhanced learnable graph self-attention network, among

which Hits@10 increases by 4.4. Therefore, the model can effectively improve the quality of

knowledge representation.

Experiment 4: In order to verify the effectiveness of the proposed method in knowledge rep-

resentation, this experiment adopts FB15k-237 data set and selects 8 representative and highly

influential methods from the related work in recent years as the objects for experimental compar-
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Table 5: Comparison between the present and the baseline methods

Models MR MRR Hits@10

TransE [5] 347 0.294 46.5

DISTMULT [31] 254 0.241 41.9

COMPLEX [16] 339 0.247 42.8

KBGAN [17] - 0.278 45.8

ConvE [13] 246 0.316 49.1

ConvKB [14] 257 0.396 51.7

RotatE [12] 177 0.338 53.3

SACN [22] - 0.350 54.0

R-GAT 324 0.357 54.4

R-GATKB 298 0.373 55.6

R-GATKB-N 272 0.376 56.1

ison. The experimental results are presented in Table 5:

All the baseline results in Table 5 are copied from the original paper, and the missing data in-

dicate that there is no corresponding report score in the original paper. Here, R-GAT is the exper-

imental result of adding the relation-enhanced adjacency matrix. R-GATKB is the experimental

result of adding the relation-enhanced adjacency matrix and the convolution knowledge subgraph.

R-GATKB-N is the experimental result of adding the relation-enhanced adjacency matrix and the

convolution knowledge subgraph and improving the negative samples. The experimental results

show that drawing on the relation-enhanced learnable graphs self-attention network, takes into

full consideration the more comprehensive information of knowledge graphs and improves the

learn ability of the model for a better effect of the model. By comparison with the SACN [22],

Obvious increases are shown in Hits@10 and MRR, which shows that the based on the graph

structure and relation-enhanced adjacency matrix, considering the imbalance of knowledge infor-

mation and the construction of convolutional knowledge subgraphs can increase the learn ability

of model, so that obtain a better knowledge representation.

Experiment 5: In this experiment, In order to test the applicability on different data sets, this

method is implemented on the data set WN18RR, and the applicability is verified by the effect

therefrom. The experimental results are shown in Table 6.

The experimental results in Table 6 indicate the method proposed in this paper improves the

evaluation indexes Hits@10 and MRR in the data set WN18RR compared with the latest research

results of SACN [22]. Furthermore, the applicability of the proposed method can be verified
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Table 6: Comparative experimental results of different methods in the WN18RR

Models MR MRR Hits@10

TransE [5] 3384 0.226 50.1

DISTMULT [31] 5110 0.430 49.0

COMPLEX [16] 5261 0.440 51.0

KBGAN [17] - 0.213 48.1

ConvE [13] 5277 0.460 48.0

ConvKB [14] 2554 0.248 52.5

RotatE [12] 3340 0.476 57.1

SACN [22] - 0.470 54.0

R- GATKB-N 3169 0.488 55.4

owing to the better results achieved on different data sets in knowledge representation.

4.5 Conclusions

Aiming at the complexity and large-scale of knowledge information determine that the classic

graph convolutional network cannot achieve better knowledge graph embedding. The paper puts

forward the method of end-to-end relation-enhanced learnable graphs self -attention network for

knowledge graphs embedding. The proposed method promotes the flexibility and learn ability

of network model. The entity linking prediction experiments on public data sets have achieved

good results. In the near future, great emphasis should be put on the construction of knowledge-

driven neural network model, which transforms the feature learning of model into the knowledge

learning with a higher level.

5 Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFB1402900), the

Nature and Science Foundation of China (61966020) and Chongqing Social Science Founda-

tion(Grant number:2020YBTQ130). The authors are grateful to the referee for his helpful com-

ments and constructive suggestions which have contributed to the final preparation of this paper.

17



6 Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Human and animal rights This article does not contain any studies with human or animal sub-

jects performed by any of the authors.

Informed consent Informed consent was not required as no human or animals were involved.

Authorship contributions Hongbin Wang puts forward the idea of the thesis and guides the s-

tudents to realize the code. Shengchen Jiang participated in the programming and writing of the

thesis. Xiang Hou participated in the revision and improvement of the thesis.

References

[1] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. Dkn: Deep knowledge-aware

network for news recommendation. In Proceedings of WWW. 1835C1844 (2018)

[2] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li: Knowledge graph embedding

based question answering. In Proceedings of WSDM. 105C113 (2019)

[3] Alberto, et al: Combining two and three-way embedding models for link prediction in

knowledge bases. Journal of Artificial Intelligence Research. 55,715-742 (2016)

[4] Nickel, Maximilian, et al: A review of relational machine learning for knowledge graphs.

Proceedings of the IEEE.104(1),11-33 (2015)

[5] Bordes, Antoine, et al: Translating embeddings for modeling multi-relational data. present-

ed at the Advances in neural information processing systems. 2787-2795 (2013)

[6] Wang Z, Zhang J, Feng J, et al: Knowledge graph embedding by translating on hyperplanes.

Twenty-Eighth AAAI conference on artificial intelligence. 1532-1543 (2014)

[7] Lin Y, Liu Z, Sun M, et al: Learning entity and relation embeddings for knowledge graph

completion. Twenty-ninth AAAI conference on artificial intelligence. (2015)

[8] Ji, Guoliang, et al: Knowledge graph embedding via dynamic mapping matrix. presented

at the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing. 687-696 (2015)

[9] He S, Liu K, Ji G, et al: Learning to represent knowledge graphs with gaussian embedding.

Proceedings of the 24th ACM International on Conference on Information and Knowledge

Management. ACM. 623-632 (2015)

18



[10] Ji G, Liu K, He S, et al: Knowledge graph completion with adaptive sparse transfer matrix.

Thirtieth AAAI Conference on Artificial Intelligence. (2016)

[11] Ebisu T, Ichise R. Toruse: Knowledge graph embedding on a lie group. Thirty-Second

AAAI Conference on Artificial Intelligence. (2018)

[12] Sun Z, Deng Z H, Nie J Y, et al: RotatE: Knowledge Graph Embedding by Relational

Rotation in Complex Space. arXiv preprint arXiv:1902.10197. (2019)

[13] Dettmers T, Minervini P, Stenetorp P, et al: Convolutional 2d knowledge graphembeddings.

Thirty-Second AAAI Conference on Artificial Intelligence. (2018)

[14] Nguyen D Q, Nguyen T D, Nguyen D Q, et al: A novel embedding model for knowledge

base completion based on convolutional neural network. arXiv preprint arXiv:1712.02121.

(2017)

[15] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, and Partha Talukdar:

Interacte: Improving convolution-based knowledge graph embeddings by increasing feature

interactions. arXiv preprint arXiv:1911.00219. (2019)

[16] Trouillon T, Welbl J, Riedel S, et al: Complex embeddings for simple link prediction. Inter-

national Conference on Machine Learning. 2071-2080 (2016)

[17] Cai L, Wang W Y. Kbgan: Adversarial learning for knowledge graph embeddings. NAACL.

(2018)

[18] Schlichtkrull M, Kipf T N, Bloem P, et al: Modeling relational data with graph convolutional

networks. European Semantic Web Conference. Springer, Cham. 593-607 (2018)

[19] Kalchbrenner, N.; Grefenstette, E.; and Blunsom, P.: A Convolutional Neural Network for

Modelling Sentences. In Proceedings of ACL 2014. 1, 655C665, (2014)

[20] Defferrard, M.; Bresson, X.; and Vandergheynst, P.: Convolutional Neural Networks on

Graphs with Fast Localized Spectral Filtering. In Proceedings of NIPS. 3837C3845 (2016)

[21] Schlichtkrull M, Kipf T N, Bloem P, et al: Modeling relational data with graph convolutional

networks. European Semantic Web Conference. Springer, Cham. 593-607 (2018)

[22] Shang C, Tang Y, Huang J, et al: End-to-end Structure-Aware Convolutional Networks for

Knowledge Base Completion. arXiv preprint arXiv:1811.04441. (2018)

19



[23] Nathani D, Chauhan J, Sharma C, et al: Learning Attention-based Embeddings for Relation

Prediction in Knowledge Graphs. Proceedings of the 57th Annual Meeting of the Associa-

tion for Computational Linguistics. 4710-4723 (2019)

[24] Boyang Ding, Quan Wang, Bin Wang, and Li Guo: Improving knowledge graph embedding

using simple constraints. In Proceedings of ACL. 110C121 (2018)

[25] Seyed Mehran Kazemi and David Poole: Simple embedding for link prediction in knowl-

edge graphs. In Proceedings of NIPS. 4289C4300 (2018)

[26] Canran Xu and Ruijiang Li: Relation embedding with dihedral group in knowledge graph.

In Proceedings of ACL. 263C272 (2019)

[27] Chen H, Sun X, Tian Y, et al: Enhanced network embeddings via exploiting edge label-

s. Proceedings of the 27th ACM International Conference on Information and Knowledge

Management. 1579-1582 (2018)

[28] Zhang W, Paudel B, Zhang W, et al: Interaction Embeddings for Prediction and Explanation

in Knowledge Graphs. Proceedings of the Twelfth ACM International Conference on Web

Search and Data Mining. 96-104 (2019)

[29] Hamilton W, Bajaj P, Zitnik M, et al: Embedding logical queries on knowledge graphs.

Advances in Neural Information Processing Systems. 2026-2037 (2018)

[30] Vaswani, Ashish, et al: Attention is all you need. presented at the Advances in neural infor-

mation processing systems. 5998-6008 (2017)

[31] Yang B, Yih W, He X, et al: Embedding entities and relations for learning and inference in

knowledge bases. arXiv preprint arXiv:1412.6575. (2014)

20


