Skip to main content

Towards Distributed Graph Representation Learning

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2012))

  • 593 Accesses

Abstract

Distributed graph representation learning refers to the process of learning graph data representation in a distributed computing environment. In the process of distributed graph representation learning, nodes need to exchange data frequently, making data transmission crucial in this context. The content of data transmission, including plaintext data, ciphertext data, and model parameters, affects the performance, computational and communication costs, and privacy protection of distributed graph representation learning. However, there is currently a lack of comprehensive investigations into distributed graph representation learning. This paper fills this gap by conducting a detailed study on distributed graph representation learning and summarizing various methods for transmitting different types of content. We review the applications and evaluation methods of distributed graph representation learning and, through an analysis of the strengths and limitations of existing research, provide insights into the future development directions of distributed graph representation learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C., et al.: Vertically federated graph neural network for privacy-preserving node classification. In: IJCAI, pp. 1959–1965. ijcai.org (2022)

    Google Scholar 

  2. Chen, F., Li, P., Miyazaki, T., Wu, C.: Fedgraph: federated graph learning with intelligent sampling. IEEE Trans. Parallel Distributed Syst. 33(8), 1775–1786 (2022)

    Article  Google Scholar 

  3. Chen, J., Huang, G., Zheng, H., Yu, S., Jiang, W., Cui, C.: Graph-fraudster: adversarial attacks on graph neural network-based vertical federated learning. IEEE Trans. Comput. Soc. Syst. 10(2), 492–506 (2023)

    Article  Google Scholar 

  4. Cheung, T.H., Dai, W., Li, S.: Fedsgc: federated simple graph convolution for node classification. In: IJCAI Workshops (2021)

    Google Scholar 

  5. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: WWW, pp. 2331–2341. ACM / IW3C2 (2020)

    Google Scholar 

  6. Guo, Y., Zhao, R., Lai, S., Fan, L., Lei, X., Karagiannidis, G.K.: Distributed machine learning for multiuser mobile edge computing systems. IEEE J. Sel. Top. Signal Process. 16(3), 460–473 (2022)

    Article  Google Scholar 

  7. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp. 1024–1034 (2017)

    Google Scholar 

  8. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2016)

    Google Scholar 

  9. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. In: NeurIPS (2020)

    Google Scholar 

  10. Jia, Z., Lin, S., Gao, M., Zaharia, M., Aiken, A.: Improving the accuracy, scalability, and performance of graph neural networks with roc. In: MLSys. mlsys.org (2020)

    Google Scholar 

  11. Kaler, T., et al.: Accelerating training and inference of graph neural networks with fast sampling and pipelining. In: MLSys. mlsys.org (2022)

    Google Scholar 

  12. Klauck, H., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed computation of large-scale graph problems. In: SODA, pp. 391–410. SIAM (2015)

    Google Scholar 

  13. Li, Q., Coutino, M., Leus, G., Christensen, M.G.: Privacy-preserving distributed graph filtering. In: EUSIPCO, pp. 2155–2159. IEEE (2020)

    Google Scholar 

  14. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  15. Liu, Y., Fang, S., Wang, L., Huan, C., Wang, R.: Neural graph collaborative filtering for privacy preservation basedon federated transfer learning. Electron. Libr. 40(6), 729–742 (2022)

    Article  Google Scholar 

  16. Ma, L., et al.: Neugraph: Parallel deep neural network computation on large graphs. In: USENIX Annual Technical Conference, pp. 443–458. USENIX Association (2019)

    Google Scholar 

  17. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD Conference, pp. 135–146. ACM (2010)

    Google Scholar 

  18. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR, pp. 43–52. ACM (2015)

    Google Scholar 

  19. Md, V., et al.: Distgnn: scalable distributed training for large-scale graph neural networks. In: SC, p. 76. ACM (2021)

    Google Scholar 

  20. Miao, X., et al.: P\({}^{\text{2 }}\)cg: a privacy preserving collaborative graph neural network training framework. VLDB J. 32(4), 717–736 (2023)

    Article  Google Scholar 

  21. Namata, G., London, B., Getoor, L., Huang, B., Edu, U.: query-driven active surveying for collective classification. In: 10th International Workshop on Mining And Learning with Graphs. vol. 8, p. 1 (2012)

    Google Scholar 

  22. Ni, X., Xu, X., Lyu, L., Meng, C., Wang, W.: A vertical federated learning framework for graph convolutional network. CoRR abs/2106.11593 (2021)

    Google Scholar 

  23. Peng, L., Wang, N., Dvornek, N., Zhu, X., Li, X.: Fedni: Federated graph learning with network inpainting for population-based disease prediction. IEEE Transactions on Medical Imaging (2022)

    Google Scholar 

  24. Qiu, P., et al.: Your labels are selling you out: Relation leaks in vertical federated learning. IEEE Transactions on Dependable and Secure Computing (2022)

    Google Scholar 

  25. Ren, Y., Jie, Y., Wang, Q., Zhang, B., Zhang, C., Wei, L.: A hybrid secure computation framework for graph neural networks. In: PST, pp. 1–6. IEEE (2021)

    Google Scholar 

  26. Rodríguez, E., Otero, B., Canal, R.: A survey of machine and deep learning methods for privacy protection in the internet of things. Sensors 23(3), 1252 (2023)

    Article  Google Scholar 

  27. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI, pp. 4292–4293. AAAI Press (2015)

    Google Scholar 

  28. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–106 (2008)

    Google Scholar 

  29. Shao, Y., et al.: Distributed graph neural network training: a survey. CoRR abs/2211.00216 (2022)

    Google Scholar 

  30. Wang, L., et al.: Flexgraph: a flexible and efficient distributed framework for GNN training. In: EuroSys, pp. 67–82. ACM (2021)

    Google Scholar 

  31. Wang, S., Xie, J., Lu, M., Xiong, N.N.: Fedgraph-kd: an effective federated graph learning scheme based on knowledge distillation. In: BigDataSecurity/HPSC/IDS, pp. 130–134. IEEE (2023)

    Google Scholar 

  32. Wang, S., Zheng, Y., Jia, X.: Secgnn: privacy-preserving graph neural network training and inference as a cloud service. IEEE Transactions on Services Computing (2023)

    Google Scholar 

  33. Wu, B., et al.: A survey of trustworthy graph learning: Reliability, explainability, and privacy protection. arXiv preprint arXiv:2205.10014 (2022)

  34. Wu, C., Wu, F., Cao, Y., Huang, Y., Xie, X.: Fedgnn: federated graph neural network for privacy-preserving recommendation. CoRR abs/2102.04925 (2021)

    Google Scholar 

  35. Wu, C., Wu, F., Lyu, L., Qi, T., Huang, Y., Xie, X.: A federated graph neural network framework for privacy-preserving personalization. Nat. Commun. 13(1), 3091 (2022)

    Article  Google Scholar 

  36. Wu, N., Yu, L., Yang, X., Cheng, K.T., Yan, Z.: Federated learning with imbalanced and agglomerated data distribution for medical image classification. arXiv preprint arXiv:2206.13803 (2022)

  37. Yang, S., Chen, W., Zhang, X., Liang, C., Wang, H., Cui, W.: A graph-based model for transmission network vulnerability analysis. IEEE Syst. J. 14(1), 1447–1456 (2020)

    Article  Google Scholar 

  38. Yao, Y., Jin, W., Ravi, S., Joe-Wong, C.: Fedgcn: convergence and communication tradeoffs in federated training of graph convolutional networks. arXiv preprint arXiv:2201.12433 (2022)

  39. Zhang, D., et al.: AGL: a scalable system for industrial-purpose graph machine learning. Proc. VLDB Endow. 13(12), 3125–3137 (2020)

    Article  Google Scholar 

  40. Zhang, K., Yang, C., Li, X., Sun, L., Yiu, S.: Subgraph federated learning with missing neighbor generation. In: NeurIPS, pp. 6671–6682 (2021)

    Google Scholar 

  41. Zheng, C., et al.: Bytegnn: efficient graph neural network training at large scale. Proc. VLDB Endow. 15(6), 1228–1242 (2022)

    Article  Google Scholar 

  42. Zhou, A.C., Qiu, R., Lambert, T., Allard, T., Ibrahim, S., Abbadi, A.E.: Pgpregel: an end-to-end system for privacy-preserving graph processing in geo-distributed data centers. In: SoCC, pp. 386–402. ACM (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R &D Program of China No.2021YFF0900800, the NSFC No.62202279, the Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project) No.2021CXGC010108, the Shandong Provincial Natural Science Foundation No.ZR2022QF018, the Shandong Provincial Outstanding Youth Science Foundation No.2023HWYQ-039, the Fundamental Research Funds of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Zhang, Y., He, W., Xu, Y., Cui, L. (2024). Towards Distributed Graph Representation Learning. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9637-7_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9636-0

  • Online ISBN: 978-981-99-9637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics