Skip to main content

Er-EIR: A Chinese Question Matching Model Based on Word-Level and Sentence-Level Interaction Features

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2012))

  • 540 Accesses

Abstract

The semantic matching of questions is a fundamental aspect of retrieval-based question answering (QA) systems. Text representations containing rich semantic information are required to achieve a deeper understanding of question intent. While existing large pre-trained models can obtain character-based text representations with contextual information, the specificity of Chinese sentences makes word-based text representation superior to character-based text representation. In this paper, we propose a question semantic matching method based on word-level and sentence-level interaction features. We utilize a Bidirectional Long Short-Term Memory (BiLSTM) approach to enhance the contextual information of the word representations. Additionally, we incorporate a co-attention mechanism to capture the interaction information between sentence pairs. By comparing our model with several baseline models on a self-built dataset of university financial question pairs, we have achieved remarkable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, P., et al.: Dataset and neural recurrent sequence labeling model for open-domain factoid question answering. arXiv preprint arXiv:1607.06275 (2016)

  2. Wang, D., Wang, W., Wang, S.: Research on domain-specific question answering system oriented natural language understanding: a survey. Comput. Sci. 44(8), 1–41 (2017)

    Google Scholar 

  3. Yu, J., et al.: Modelling domain relationships for transfer learning on retrieval-based question answering systems in e-commerce. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM), pp. 682–690. Association for Computing Machinery, New York, NY, USA (2018)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. Wang, J., et al.: Fengshenbang 1.0: being the foundation of Chinese cognitive intelligence. arXiv preprint arXiv:2209.02970 (2022)

  6. Gao, T., Yao, X., Chen, D.: SimCSE: simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021)

  7. Weizenbaum, J.: ELIZA—a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

    Article  Google Scholar 

  8. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., et al.: Building watson: an overview of the deepqa project. AI Mag. 31(3), 59–79 (2010)

    Google Scholar 

  9. Zhou, L., Gao, J., Li, D., Shum, H.Y.: The design and implementation of XiaoIce, an empathetic social chatbot. Comput. Linguist. 46(1), 53–93 (2020)

    Article  Google Scholar 

  10. Gao, T.: Design and implementation of university financial counseling question answering prototype system based on NLP (基于NLP的高校财务咨询问答原型系统设计与实现). Master’s thesis, Beijing Jiaotong University (2020)

    Google Scholar 

  11. Chi, Y.: Research on question answering technology of enterprise financial audit based on deep learning (基于深度学习的企业财务审计问答技术研究). Master’s thesis, Harbin Engineering University (2018)

    Google Scholar 

  12. Wang, Y.: Design and implementation of financial intelligent question answering system based on knowledge graph (基于知识图谱的财务智能问答系统的设计与实现). Master’s thesis, Huazhong University of Science and Technology (2020)

    Google Scholar 

  13. Zhu, F., et al.: TAT-QA: a question answering benchmark on a hybrid of tabular and textual content in finance. arXiv preprint arXiv:2105.07624 (2021)

  14. Zaib, M., Zhang, W.E., Sheng, Q.Z., Mahmood, A., Zhang, Y.: Conversational question answering: a survey. Knowl. Inf. Syst. 64(12), 3151–3195 (2022)

    Article  Google Scholar 

  15. Lu, X., Deng, Y., Sun, T., Gao, Y., Feng, J., Sun, X., et al.: MKPM: multi keyword-pair matching for natural language sentences. Appl. Intell. 52(2), 1878–1892 (2022)

    Article  Google Scholar 

  16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  17. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 30, pp. 1-11 (2017)

    Google Scholar 

  20. Deng, Y., Li, X., Zhang, M., Lu, X., Sun, X.: Enhanced distance-aware self-attention and multi-level match for sentence semantic matching. Neurocomputing 501, 174–187 (2022)

    Article  Google Scholar 

  21. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933 (2016)

  22. Su, J.: Text emotion classification (IV): better loss function (2017). https://spaces.ac.cn/archives/4293

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  24. Zhang, X., Li, Y., Lu, W., Jian, P., Zhang, G.: Intra-correlation encoding for Chinese sentence intention matching. In: Proceedings of the 28th International Conference on Computational Linguistics (COLING), pp. 5193–5204. International Committee on Computational Linguistics, Barcelona, Spain (2020)

    Google Scholar 

  25. Chen, J., Chen, Q., Liu, X., Yang, H., Lu, D., Tang, B.: The BQ corpus: a large-scale domain-specific Chinese corpus for sentence semantic equivalence identification. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4946–4951. Association for Computational Linguistics, Brussels, Belgium (2018)

    Google Scholar 

  26. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  27. Lu, W., et al.: Chinese sentence semantic matching based on multi-level relevance extraction and aggregation for intelligent human–robot interaction. Appl. Soft Comput. 131, 109795 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China under Grant (61972336, 62073284), and Zhejiang Provincial Natural Science Foundation of China under Grant (LY23F020001, LY22F020027, LY19F030008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ying, Y., Zhang, Z., Wu, H., Dong, Y. (2024). Er-EIR: A Chinese Question Matching Model Based on Word-Level and Sentence-Level Interaction Features. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9637-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9636-0

  • Online ISBN: 978-981-99-9637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics