Skip to main content

A Method for Security Traffic Patrolling Based on Structural Coordinated Proximal Policy Optimization

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2013))

  • 169 Accesses

Abstract

Multi-agent patrolling has significant implications for addressing real-world security concerns. In multi-agent systems, the actions of agent directly influence those with whom it interacts. Traditional reinforcement learning-based multi-agent security patrolling methods overlook the role of these localized interactions in coordination among agents, thus failing to enhance the efficiency. To address this issue, this paper introduces a security patrolling approach based on Structured Coordinated Proximal Policy Optimization (PPO). The multi-agent patrolling task is modeled as a finite-time-step distributed partially observable semi-Markov decision process. This method, grounded in the Shapley Value, designs a multi-agent credit allocation function. The efficiency of this function is amplified using the structure of localized interactions. By accurately evaluating the contributions of each agent’s selected actions, this function fosters enhanced coordination among agents. Extensive experiments in various scenarios were conducted, and the results demonstrate that our algorithm outperforms benchmark algorithms in terms of convergence speed and patrolling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, X., An, B., Zhao, M., et al.: Randomized security patrolling for link flooding attack detection. IEEE Trans. Depend. Secure Comput. 17(4), 795–812 (2019)

    Article  Google Scholar 

  2. Brázdil, T., Kučera, A., Řehák, V.: Solving patrolling problems in the internet environment. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 121–127 (2018)

    Google Scholar 

  3. Savkin, A.V., Huang, H.: Asymptotically optimal deployment of drones for surveillance and monitoring. Sensors 19(9), 2068 (2019)

    Article  Google Scholar 

  4. Yang, J., Ding, Z., Wang, L.: The programming model of air-ground cooperative patrol between multi-UAV and police car. IEEE Access 9, 134503–134517 (2021)

    Article  Google Scholar 

  5. Huang, H., Savkin, A.V., Huang, C.: Decentralized autonomous navigation of a UAV network for road traffic monitoring. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2558–2564 (2021)

    Article  Google Scholar 

  6. Gu, H., Zhu, S., Cui, Y., et al.: Application of agent in security platform. In: 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops), pp. 233–238. IEEE (2019)

    Google Scholar 

  7. Yang, Q., Yindong, L., Wei, X.: Hierarchical planning for multiple AGVs in warehouse based on global vision. Simul. Model. Pract. Theory 104, 102124 (2020)

    Article  Google Scholar 

  8. Elor, Y., Bruckstein, A.M.: Autonomous multi-agent cycle based patrolling. In: Swarm Intelligence: 7th International Conference, ANTS 2010, Brussels, Belgium. Proceedings 7, pp. 119–130. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Mao, T., Ray, L.: Frequency-based patrolling with heterogeneous agents and limited communication. arXiv preprint arXiv:1402.1757 (2014)

  10. Sea, V., Sugiyama, A., Sugawara, T.: Frequency-based multi-agent patrolling model and its area partitioning solution method for balanced workload. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 530–545. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_38

    Chapter  Google Scholar 

  11. Wiandt, B., Simon, V.: Autonomous graph partitioning for multi-agent patrolling problems. In: 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 261–268. IEEE (2018)

    Google Scholar 

  12. Almeida, A., Castro, P., Menezes, T., et al.: Combining idleness and distance to design heuristic agents for the patrolling task. In: II Brazilian Workshop in Games and Digital Entertainment, pp. 33–40 (2003)

    Google Scholar 

  13. Machado, A., Almeida, A., Ramalho, G., et al.: Multi-agent movement coordination in patrolling. In: Proceedings of the 3rd International Conference on Computer and Game. pp. 155–170. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36483-8_11

  14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press (2018)

    Google Scholar 

  15. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  16. Luis, S.Y., Reina, D.G., Marín, S.L.T.: A multiagent deep reinforcement learning approach for path planning in autonomous surface vehicles: the Ypacaraí lake patrolling case. IEEE Access 9, 17084–17099 (2021)

    Article  Google Scholar 

  17. Jana, M., Vachhani, L., Sinha, A.: A deep reinforcement learning approach for multi-agent mobile robot patrolling. Int. J. Intell. Robot. Appl. 6(4), 724–745 (2022)

    Google Scholar 

  18. Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for the Shapley value. Artif. Intell. 172(14) (2008)

    Google Scholar 

  19. Schulman, J., Wolski, F., Dhariwal, P., et al.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  20. Santana, H., Ramalho, G., Corruble, V., et al.: Multi-agent patrolling with reinforcement learning. In: International Joint Conference on Autonomous Agents and Multiagent Systems, IEEE Computer Society. vol. 4, pp. 1122–1129 (2004)

    Google Scholar 

  21. Lauri, F., Koukam, A.: Robust multi-agent patrolling strategies using reinforcement learning. In: Swarm Intelligence Based Optimization: First International Conference (ICSIBO 2014), Mulhouse, 13–14 May 2014, pp. 157–165, Springer (2014)

    Google Scholar 

  22. Rashid, T., Samvelyan, M., De Witt, C.S., et al.: Monotonic value function factorisation for deep multi-agent reinforcement learning. J. Mach. Learn. Res. 21(1), 7234–7284 (2020)

    MathSciNet  Google Scholar 

  23. Li, J., Kuang, K., Wang, B., et al.: Shapley counterfactual credits for multi-agent reinforcement learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 934–942 (2021)

    Google Scholar 

  24. Han S., Wang H., Su S., et al.: Stable and efficient Shapley value-based reward reallocation for multi-agent reinforcement learning of autonomous vehicles. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 8765–8771. IEEE (2022)

    Google Scholar 

  25. Wang, J., Zhang, Y., Kim, T.K., et al.: Shapley Q-value: a local reward approach to solve global reward games. Proc. AAAI Conf. Artif. Intell. 34(05) 7285–7292 (2020)

    Google Scholar 

  26. Machado, A., Ramalho, G., Zucker, J.D., et al.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: Multi-agent-Based Simulation II: Third International Workshop. MABS 2002 Bologna, Italy, pp. 155–170. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.30, no. 1 (2016)

    Google Scholar 

  28. Fatemi, M., Wu, M., Petch, J., et al.: Semi-Markov offline reinforcement learning for healthcare. In: Conference on Health, Inference, and Learning, pp. 119–137. PMLR (2022)

    Google Scholar 

  29. Wang, Z., Schaul, T., Hessel, M., et al.: Dueling network architectures for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1995–2003. PMLR (2016)

    Google Scholar 

  30. Rosenfeld, A., Maksimov, O., Kraus, S.: When security games hit traffic: a deployed optimal traffic enforcement system. Artif. Intell. 289, 103381 (2020)

    Google Scholar 

  31. Weisburd, S.: Does Police Presence Reduce Car Accidents? Tel Aviv University, Pinhas Sapir Center for Development (2016)

    Google Scholar 

  32. Elliott, M.A., Broughton, J.: How Methods and Levels of Policing Affect Road Casualty Rates. TRL Limited, London (2005)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (62076060, 62072099, 61932007, 61806053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Che, Q., Wang, F., Zhang, H., Wang, W., Jiang, Y. (2024). A Method for Security Traffic Patrolling Based on Structural Coordinated Proximal Policy Optimization. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2013. Springer, Singapore. https://doi.org/10.1007/978-981-99-9640-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9640-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9639-1

  • Online ISBN: 978-981-99-9640-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics