Skip to main content

Influence of the Printing Direction on the Surface Appearance in Multi-material Fused Filament Fabrication

  • Conference paper
  • First Online:
Computer-Aided Design and Computer Graphics (CADGraphics 2023)

Abstract

Multi-material fused filament fabrication (FFF) offers the ability to print 3D objects with very diverse surface appearances. However, control of the surface appearance is largely a matter of trial and error unless the employed materials are very similar and very translucent, so we can think of them as blending together. When the multiple materials are fused into one filament in a diamond hotend extruder but do not blend, the resulting surface appearance depends on the printing direction. We explore how this leads to milli-scale colorations as a function of the printing direction. By having preferable printing directions, it is possible to exploit the limited color blending of this nozzle with multiple inlets and one outlet and further enhance particular color effects, such as goniochromatism. We present a framework based on both experimental and computational fluid dynamics analysis for controlling the extrusion process and the coloration of the surface according to preferable printing directions and mixing ratios with the aim of enabling fused filament fabrication of intricate surface appearances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agassant, J.F., Pigeonneau, F., Sardo, L., Vincent, M.: Flow analysis of the polymer spreading during extrusion additive manufacturing. Addit. Manuf. 29, 100794 (2019). https://doi.org/10.1016/j.addma.2019.100794

    Article  Google Scholar 

  2. Akhoundi, B., Nabipour, M., Hajami, F., Band, S.S., Mosavi, A.: Calculating filament feed in the fused deposition modeling process to correctly print continuous fiber composites in curved paths. Materials 13, 4480 (2020). https://doi.org/10.3390/ma13204480

  3. Anderegg, D.A., et al.: In-situ monitoring of polymer flow temperature and pressure in extrusion based additive manufacturing. Addit. Manuf. 26, 76–83 (2019). https://doi.org/10.1016/j.addma.2019.01.002

    Article  Google Scholar 

  4. Babaei, V., Vidimce, K., Foshey, M., Kaspar, A., Didyk, P., Matusik, W.: Color contoning for 3D printing. ACM Trans. Graph. 36(4), 124:1–124:15 (2017). https://doi.org/10.1145/3072959.3073605

  5. Bellini, A., Güçeri, S., Bertoldi, M.: Liquefier dynamics in fused deposition. J. Manuf. Sci. Eng. 126(2), 237–246 (2004). https://doi.org/10.1115/1.1688377

    Article  Google Scholar 

  6. Chermain, X., Zanni, C., Martínez, J., Hugron, P.A., Lefebvre, S.: Orientable dense cyclic infill for anisotropic appearance fabrication. ACM Trans. Graph. 42(4) (2023). https://doi.org/10.1145/3592412, to appear

  7. Comminal, R., Serdeczny, M.P., Pedersen, D.B., Spangenberg, J.: Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Addit. Manuf. 20, 68–76 (2018). https://doi.org/10.1016/j.addma.2017.12.013

    Article  Google Scholar 

  8. Comminal, R., da Silva, W.R.L., Andersen, T.J., Stang, H., Spangenberg, J.: Influence of processing parameters on the layer geometry in 3D concrete printing: Experiments and modelling. Rilem State of the Art Reports, pp. 852–862 (2020). https://doi.org/10.1007/978-3-030-49916-7_83

  9. Comminal, R., Spangenberg, J., Hattel, J.H.: Cellwise conservative unsplit advection for the volume of fluid method. J. Comput. Phys. 283, 582–608 (2015). https://doi.org/10.1016/j.jcp.2014.12.003

    Article  MathSciNet  Google Scholar 

  10. Flow Science Inc: FLOW-3D® (2019). https://www.flow3d.com

  11. Hergel, J., Lefebvre, S.: Clean color: improving multi-filament 3D prints. Comput. Graph. Forum 33(2), 469–478 (2014). https://doi.org/10.1111/cgf.12318

    Article  Google Scholar 

  12. Inc., X.: da Vinci Color 3D Printer (2022). https://www.xyzprinting.com/en-US/product/da-vinci-color

  13. Koirala, P., Hauta-Kasari, M., Martinkauppi, B., Hiltunen, J.: Color mixing and color separation of pigments with concentration prediction. Color Res. Appl. 33(6), 461–469 (2008). https://doi.org/10.1002/col.20441

    Article  Google Scholar 

  14. Kuipers, T., Elkhuizen, W., Verlinden, J., Doubrovski, E.: Hatching for 3D prints: line-based halftoning for dual extrusion fused deposition modeling. Comput. Graph. 74, 23–32 (2018). https://doi.org/10.1016/j.cag.2018.04.006

    Article  Google Scholar 

  15. Littler, E., Zhu, B., Jarosz, W.: Automated filament inking for multi-color FFF 3D printing. In: ACM Symposium on User Interface Software and Technology (UIST), pp. 83:1–83:13 (2022). https://doi.org/10.1145/3526113.3545654

  16. Mollah, M.T., Comminal, R., Serdeczny, M.P., Pedersen, D.B., Spangenberg, J.: Stability and deformations of deposited layers in material extrusion additive manufacturing. Addit. Manuf. 46, 102193 (2021). https://doi.org/10.1016/j.addma.2021.102193

    Article  Google Scholar 

  17. Mollah, M.T., Comminal, R., Serdeczny, M.P., Pedersen, D.B., Spangenberg, J.: Numerical predictions of bottom layer stability in material extrusion additive manufacturing. JOM 74(3), 1096–1101 (2022). https://doi.org/10.1007/s11837-021-05035-9

    Article  Google Scholar 

  18. Mollah, M.T., et al.: Investigation on corner precision at different corner angles in material extrusion additive manufacturing: an experimental and computational fluid dynamics analysis. In: International Solid Freeform Fabrication Symposium, pp. 872–881 (2022). https://doi.org/10.26153/tsw/44202

  19. Mueller, R.K.: Spiritdude’s Public Notebook (2019). https://spiritdude.wordpress.com/2019/04/11/

  20. Phan, D.D., Swain, Z.R., Mackay, M.E.: Rheological and heat transfer effects in fused filament fabrication. J. Rheol. 62, 1097–1107 (2018). https://doi.org/10.1122/1.5022982

    Article  Google Scholar 

  21. Reiner, T., Carr, N., Měch, R., Št’ava, O., Dachsbacher, C., Miller, G.: Dual-color mixing for fused deposition modeling printers. Comput. Graph. Forum 33(2), 479–486 (2014). https://doi.org/10.1111/cgf.12319

    Article  Google Scholar 

  22. Serdeczny, M.P., Comminal, R., Mollah, M.T., Pedersen, D.B., Spangenberg, J.: Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing. Addit. Manuf. 36, 101454 (2020). https://doi.org/10.1016/j.addma.2020.101454

    Article  Google Scholar 

  23. Serdeczny, M.P., Comminal, R., Mollah, M.T., Pedersen, D.B., Spangenberg, J.: Viscoelastic simulation and optimisation of the polymer flow through the hot-end during filament-based material extrusion additive manufacturing. Virtual Phys. Prototyp. 17(2), 205–219 (2022). https://doi.org/10.1080/17452759.2022.2028522

    Article  Google Scholar 

  24. Serdeczny, M.P., Comminal, R., Pedersen, D.B., Spangenberg, J.: Experimental and analytical study of the polymer melt flow through the hot-end in material extrusion additive manufacturing. Addit. Manuf. 32, 100997 (2020). https://doi.org/10.1016/j.addma.2019.100997

    Article  Google Scholar 

  25. Serdeczny, M.P., Comminal, R.B., Pedersen, D.B., Spangenberg, J.: Experimental validation of a numerical model for the strand shape in material extrusion additive manufacturing. Addit. Manuf. 24, 145–153 (2018). https://doi.org/10.1016/j.addma.2018.09.022

    Article  Google Scholar 

  26. Serdeczny, M.P., Comminal, R., Pedersen, D.B., Spangenberg, J.: Numerical prediction of the porosity of parts fabricated with fused deposition modeling. In: International Solid Freeform Fabrication Symposium, pp. 1849–1854 (2018). https://doi.org/10.26153/tsw/17187

  27. Song, H., Martínez, J., Bedell, P., Vennin, N., Lefebvre, S.: Colored fused filament fabrication. ACM Trans. Graph. 38(5), 141:1–141:11 (2019). https://doi.org/10.1145/3183793

  28. Spangenberg, J., Leal da Silva, W.R., Mollah, M.T., Comminal, R., Juul Andersen, T., Stang, H.: Integrating reinforcement with 3D concrete printing: experiments and numerical modelling. Rilem State of the Art Reports, pp. 379–384 (2022). https://doi.org/10.1007/978-3-031-06116-5_56

  29. Sukindar, N.A., Ariffin, M.K.A., Hang Tuah Baharudin, B.T., Jaafar, C.N.A., Ismail, M.I.S.: Analyzing the effect of nozzle diameter in fused deposition modeling for extruding polylactic acid using open source 3D printing. Jurnal Teknologi 78(10), 7–15 (2016). https://doi.org/10.11113/jt.v78.6265

  30. Takahashi, H., Punpongsanon, P., Kim, J.: Programmable filament: printed filaments for multi-material 3D printing. In: ACM Symposium on User Interface Software and Technology (UIST), pp. 1209–1221, October 2020. https://doi.org/10.1145/3379337.3415863

  31. Tlegenov, Y., Hong, G.S., Lu, W.F.: Nozzle condition monitoring in 3D printing. Robot. Comput.-Integr. Manuf. 54, 45–55 (2018). https://doi.org/10.1016/j.rcim.2018.05.010

    Article  Google Scholar 

  32. Tlegenov, Y., Lu, W.F., Hong, G.S.: A dynamic model for current-based nozzle condition monitoring in fused deposition modelling. Progress Addit. Manuf. 4, 211–223 (2019). https://doi.org/10.1007/s40964-019-00089-3

    Article  Google Scholar 

  33. Valberg, A.: Light, Vision, Color. Wiley, Hoboken (2005)

    Google Scholar 

  34. W. Hirt, C., D. Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

  35. Wang, Z., Shen, H., Wu, S., Fu, J.: Colourful fused filament fabrication method based on transitioning waste infilling technology with a colour surface model. Rapid Prototyp. J. 27(1), 145–154 (2021). https://doi.org/10.1108/RPJ-04-2020-0072

    Article  Google Scholar 

  36. Wu, L., Yang, T., Guan, Y., Shi, G., Xiang, Y., Gao, Y.: Semantic guided multi-directional mixed-color 3D printing. In: Peng, Y., Hu, S.-M., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds.) ICIG 2021. LNCS, vol. 12890, pp. 106–117. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87361-5_9

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is part of the ApPEARS project funded by the European Union’s Horizon 2020 programme under the Marie Skłodowska-Curie Actions grant agreement no. 814158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeppe Revall Frisvad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tonello, R. et al. (2024). Influence of the Printing Direction on the Surface Appearance in Multi-material Fused Filament Fabrication. In: Hu, SM., Cai, Y., Rosin, P. (eds) Computer-Aided Design and Computer Graphics. CADGraphics 2023. Lecture Notes in Computer Science, vol 14250. Springer, Singapore. https://doi.org/10.1007/978-981-99-9666-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9666-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9665-0

  • Online ISBN: 978-981-99-9666-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics