Abstract
The goal of network defense mechanisms is to enable systems to actively detect and withstand attacks, reduce reliance on external security measures, and quickly recover and repair. This paper elaborates on relevant works from both passive defense and proactive defense perspectives. Our first contribution is to introduce strategies and technologies related to passive defense, discussing in detail access control strategies, identity authentication technologies, and firewall technologies. These technologies play a significant role in protecting computer systems and networks from unauthorized access and malicious activities. Addressing the limitations of passive defense, such as: difficult to resolve uncertainty attacks and passive self-defense, our second contribution is to introduce strategies and technologies related to proactive defense. Firstly, we provide a comparative introduction to moving target strategies, intrusion tolerance strategies, and mimic defense strategies. Secondly, based on the mimic defense strategy, we provide a detailed introduction to mimic routers and mimic server technologies, which simulate normal network traffic and service behavior to enhance system security. Moreover, we provide future prospects and suggest potential directions. These approaches can help protect computer systems and networks from various security threats and provide valuable insights for researchers and security professionals on how to address evolving threats.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mijwil, M., et al.: Cybersecurity challenges in smart cities: an overview and future prospects. Mesop. J. Cybersecur. 2022, 1–4 (2022)
Sahana, Y.P., Gotkhindikar, A., Tiwari, S.K.: Survey on can-bus packet filtering firewall. In: 2022 International Conference on Edge Computing and Applications (ICECAA). IEEE (2022)
Sreelaja, N.K.: A fireworks-based approach for efficient packet filtering in firewall. In: Handbook of Research on Fireworks Algorithms and Swarm Intelligence. IGI Global, pp. 315–333 (2020)
Durante, L., Seno, L., Valenzano, A.: A formal model and technique to redistribute the packet filtering load in multiple firewall networks. IEEE Trans. Inf. Forensics Secur. 16, 2637–2651 (2021)
Malikovich, K.M., Rajaboevich, G.S., Karamatovich, Y.B.: Method of constructing packet filtering rules. In: 2019 International Conference on Information Science and Communications Technologies (ICISCT). IEEE (2019)
Ari Muzakir, A.: Analisis Kinerja Packet Filtering Berbasis Mikrotik Routerboard Pada Sistem Keamanan Jaringan. Analisis Kinerja Packet Filtering Berbasis Mikrotik Routerboard pada Sistem Keamanan Jaringan (2022)
Liang, J., Kim, Y.: Evolution of firewalls: toward securer network using next generation firewall. In: 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). IEEE (2022)
Jingyao, S., Chandel, S., Yunnan, Yu., Jingji, Z., Zhipeng, Z.: Securing a network: how effective using firewalls and VPNs are? In: Arai, K., Bhatia, R. (eds.) FICC 2019. LNNS, vol. 70, pp. 1050–1068. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12385-7_71
Muzaki, R.A., et al.: Improving security of web-based application using ModSecurity and reverse proxy in web application firewall. In: 2020 International Workshop on Big Data and Information Security (IWBIS). IEEE (2020)
Yina, Q.: Discussion on computer network security technology and firewall technology. Int. J. New Dev. Eng. Soc. 6(4), 1–5 (2022)
Amouei, M., Rezvani, M., Fateh, M.: RAT: reinforcement-learning-driven and adaptive testing for vulnerability discovery in web application firewalls. IEEE Trans. Dependable Secure Comput. 19(5), 3371–3386 (2021)
Praise, J., Jeya, R., Raj, J.S., Bibal Benifa, J.V.: Development of reinforcement learning and pattern matching (RLPM) based firewall for secured cloud infrastructure. Wirel. Personal Commun. 115, 993–1018 (2020)
Bagheri, S., Shameli-Sendi, A.: Dynamic firewall decomposition and composition in the cloud. IEEE Trans. Inf. Forensics Secur. 15, 3526–3539 (2020)
Chebrolu, C.S., Chung-Horng, L., Ajila, S.A.: Dynamic packet filtering using machine learning. In: 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). IEEE (2022)
Kailanya, E., Mwadulo, M., Omamo, A.: Dynamic deep stateful firewall packet analysis model. Afr. J. Sci. Technol. Soc. Sci. 1(2), 116–123 (2022)
Malikovich, K.M., Rajaboevich, G.S., Karamatovich, Y.B.: Method of constructing packet filtering rules. In: 2019 International Conference on Information Science and Communications Technologies (ICISCT). IEEE (2019)
Sandhu, R., Munawer, Q.: How to do discretionary access control using roles. In: Proceedings of the Third ACM Workshop on Role-Based Access Control (1998)
Dranger, S., Sloan, R.H., Solworth, J.A.: The complexity of discretionary access control. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 405–420. Springer, Heidelberg (2006). https://doi.org/10.1007/11908739_29
Solworth, J.A., Sloan, R.H.: A layered design of discretionary access controls with decidable safety properties. In: Proceedings of IEEE Symposium on Security and Privacy, 2004. IEEE (2004)
Vijayalakshmi, K., Jayalakshmi, V.: A study on current research and challenges in attribute-based access control model. Intell. Data Commun. Technol. Internet Things Proc. ICICI 2022, 17–31 (2021)
Aftab, M.U., et al.: Traditional and hybrid access control models: a detailed survey. Secur. Commun. Netw. 2022, 1–5 (2022)
Gihleb, R., Giuntella, O., Zhang, N.: The effect of mandatory-access prescription drug monitoring programs on foster care admissions. J. Human Resourc. 57(1), 217–240 (2022)
Namane, S., Dhaou, I.B.: Blockchain-based access control techniques for IoT applications. Electronics 11(14), 2225 (2022)
Fragkos, G., Johnson, J., Tsiropoulou, E.E.: Dynamic role-based access control policy for smart grid applications: an offline deep reinforcement learning approach. IEEE Trans. Human-Mach. Syst. 52(4), 761–773 (2022)
Ameer, S., Benson, J., Sandhu, R.: An attribute-based approach toward a secured smart-home IoT access control and a comparison with a role-based approach. Information 13(2), 60 (2022)
Kormpakis, G., et al.: An advanced visualisation engine with role-based access control for building energy visual analytics. In: 2022 13th International Conference on Information, Intelligence, Systems Applications (IISA). IEEE (2022)
Ghazal, R., et al.: Intelligent role-based access control model and framework using semantic business roles in multi-domain environments. IEEE Access 8, 12253–12267 (2020)
Alshammari, S.T., Albeshri, A., Alsubhi, K.: Integrating a high-reliability multicriteria trust evaluation model with task role-based access control for cloud services. Symmetry 13(3), 492 (2021)
Ding, S., et al.: A novel attribute-based access control scheme using blockchain for IoT. IEEE Access 7, 38431–38441 (2019)
Bhatt, S., et al.: Attribute-based access control for AWS internet of things and secure industries of the future. IEEE Access 9, 107200–107223 (2021)
Aghili, S.F., et al.: MLS-ABAC: efficient multi-level security attribute-based access control scheme. Future Gener. Comput. Syst. 131, 75–90 (2022)
Guo, H., Meamari, E., Shen, C.-C.: Multi-authority attribute-based access control with smart contract. In: Proceedings of the 2019 International Conference on Blockchain Technology (2019)
Zhong, H., et al.: An efficient and outsourcing-supported attribute-based access control scheme for edge-enabled smart healthcare. Future Gener. Comput. Syst. 115, 486–496 (2021)
Alenezi, M.N., Alabdulrazzaq, H., Mohammad, N.Q.: Symmetric encryption algorithms: review and evaluation study. Int. J. Commun. Netw. Inf. Secur. 12(2), 256–272 (2020)
He, K., et al.: Secure dynamic searchable symmetric encryption with constant client storage cost. IEEE Trans. Inf. Forensics Secur. 16, 1538–1549 (2020)
Li, J., et al.: Searchable symmetric encryption with forward search privacy. IEEE Trans. Dependable Secure Comput. 18(1), 460–474 (2019)
Patranabis, S., Mukhopadhyay, D.: Forward and backward private conjunctive searchable symmetric encryption. Cryptology ePrint Archive (2020)
Gui, Z., Paterson, K.G., Patranabis, S.: Rethinking searchable symmetric encryption. In: 2023 IEEE Symposium on Security and Privacy (SP). IEEE (2023)
Zhang, Q.: An overview and analysis of hybrid encryption: the combination of symmetric encryption and asymmetric encryption. In: 2021 2nd International Conference on Computing and Data Science (CDS). IEEE (2021)
Sharifovich, A.S., Maxmudovich, H.X., Mansurovich, B.M.: Protocol for electronic digital signature of asymmetric encryption algorithm, based on asymmetric encryption algorithm based on the complexity of prime decomposition of a sufficiently large natural number. Texas J. Multidiscip. Stud. 7, 238–241 (2022)
Verma, G., et al.: An optical asymmetric encryption scheme with biometric keys. Optics Lasers Eng. 116, 32–40 (2019)
Bao, Z., Xue, R., Jin, Y.: Image scrambling adversarial autoencoder based on the asymmetric encryption. Multimed. Tools App. 80(18), 28265–28301 (2021)
Hu, Z., et al.: Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium. Light Sci. App. 10(1), 140 (2021)
Jiang, F., et al.: Research on the application of transparent encryption in distributed file system HDFS. In: 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). IEEE (2020)
Su, N., Zhang, Y., Li, M.: Research on data encryption standard based on AES algorithm in internet of things environment. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE (2019)
Yazdeen, A.A., et al.: FPGA implementations for data encryption and decryption via concurrent and parallel computation: a review. Qubahan Acad. J. 1(2), 8–16 (2021)
Ramachandra, M.N., et al.: An efficient and secure big data storage in cloud environment by using triple data encryption standard. Big Data Cogn. Comput. 6(4), 101 (2022)
Akande, O.N., Abikoye, O.C., Kayode, A.A., Aro, O.T., Ogundokun, O.R.: A dynamic round triple data encryption standard cryptographic technique for data security. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 487–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_36
Rivest, R., et al.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)
Ye, G., Liu, M., Mingfa, W.: Double image encryption algorithm based on compressive sensing and elliptic curve. Alex. Eng. J. 61(9), 6785–6795 (2022)
Cui, H., et al.: TraceDroid: A Robust Network Traffic Analysis Framework for Privacy Leakage in Android Apps. In: Su, C., Sakurai, K., Liu, F. (eds.) Science of Cyber Security. SciSec 2022. LNCS, vol. 13580, pp. 541–556. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17551-0_35
Singh, S.K., Yi, P., Park, J.H.: Blockchain-enabled secure framework for energy-efficient smart parking in sustainable city environment. Sustainable Cities Soc. 76, 103364 (2022)
Kaur, S., Kaur, G., Shabaz, M.: A secure two-factor authentication framework in cloud computing. Secur. Commun. Netw. 2022, 1–9 (2022)
Watters, P., et al.: This would work perfectly if it weren’t for all the humans: two factor authentication in late modern societies. First Monday (2019)
Palma, D., Montessoro, P.L.: Biometric-based human recognition systems: an overview. In: Recent Advances Biometrics, pp. 1–21 (2022)
Singh, V., Kant, C.: Biometric-based authentication in Internet of Things (IoT): a review. Adv. Inf. Commun. Technol. Comput. Proc. AICTC 2022, 309–317 (2021)
Bera, B., et al.: On the design of biometric-based identity authentication protocol in smart city environment. Pattern Recogn. Lett. 138, 439–446 (2020)
Gupta, S., Buriro, A., Crispo, B.: DriverAuth: a risk-based multi-modal biometric-based driver authentication scheme for ride-sharing platforms. Comput. Secur. 83, 122–139 (2019)
Sengupta, S.: A secured biometric-based authentication scheme in IoT-based patient monitoring system. In: Mandal, J.K., Bhattacharya, D. (eds.) Emerging Technology in Modelling and Graphics. AISC, vol. 937, pp. 501–518. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7403-6_44
Priesnitz, J., et al.: An overview of touchless 2D fingerprint recognition. EURASIP J. Image Video Process. 2021(1), 1–28 (2021)
Rajasekar, V., et al.: Enhanced multimodal biometric recognition approach for smart cities based on an optimized fuzzy genetic algorithm. Sci. Rep. 12(1), 622 (2022)
Boyd, A., et al.: Post-mortem iris recognition-a survey and assessment of the state of the art. IEEE Access 8, 136570–136593 (2020)
Wang, C., et al.: Towards complete and accurate iris segmentation using deep multi-task attention network for non-cooperative iris recognition. IEEE Trans. Inf. Forensics Secur. 15, 2944–2959 (2020)
Dargan, S., Kumar, M.: A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Syst. Appl. 143, 113114 (2020)
Capece, G., Ghiron, N.L., Pasquale, F.: Blockchain technology: redefining trust for digital certificates. Sustainability 12(21), 8952 (2020)
Rahardja, U., et al.: Immutable ubiquitous digital certificate authentication using blockchain protocol. J. Appl. Res. Technol. 19(4), 308–321 (2021)
Maulani, G., et al.: Digital certificate authority with blockchain cybersecurity in education. Int. J. Cyber IT Serv. Manage. 1(1), 136–150 (2021)
Hu, H., et al.: Mimic defense: a designed-in cybersecurity defense framework. IET Inf. Secur. 12(3), 226–237 (2018)
Zhuang, R., et al.: A theory of cyber attacks: a step towards analyzing MTD systems. In: Proceedings of the Second ACM Workshop on Moving Target Defense (2015)
Reynolds, J., et al.: The design and implementation of an intrusion tolerant system. In: Proceedings International Conference on Dependable Systems and Networks. IEEE (2002)
Wang, F., et al.: SITAR: a scalable intrusion-tolerant architecture for distributed services. In: Workshop on Information Assurance and Security, vol. 1 (2003)
Cachin, C., et al.: Malicious-and Accidental-Fault Tolerance in Internet Applications: reference model and use cases (2000)
Pal, P., et al.: Intrusion tolerance by unpredictable adaptation (ITUA). Technical report. AFRL-IF-RS-TR-2005-119 (2005)
Bangalore, A.K., Sood, A.K.: Securing web servers using self cleansing intrusion tolerance (SCIT). In: 2009 Second International Conference on Dependability. IEEE (2009)
Huang, Y., Anup K. Ghosh. "Introducing diversity and uncertainty to create moving attack surfaces for web services. In: Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, pp. 131–151.Springer, New York, NY (2011)
Okhravi, H., et al.: Creating a cyber moving target for critical infrastructure applications using platform diversity. Int. J. Critical Infrastruct. Protect. 5(1), 30–39 (2012)
Li, X., et al.: A router abnormal traffic detection strategy based on active defense. In: Journal of Physics: Conference Series. Vol. 1738. No. 1. IOP Publishing (2021)
Tong, Q., et al.: Design and implementation of mimic defense Web server. J. Softw. 28(4), 883–897 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Shi, C., Peng, J., Zhu, S., Ren, X. (2024). From Passive Defense to Proactive Defence: Strategies and Technologies. In: Vaidya, J., Gabbouj, M., Li, J. (eds) Artificial Intelligence Security and Privacy. AIS&P 2023. Lecture Notes in Computer Science, vol 14509. Springer, Singapore. https://doi.org/10.1007/978-981-99-9785-5_14
Download citation
DOI: https://doi.org/10.1007/978-981-99-9785-5_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-9784-8
Online ISBN: 978-981-99-9785-5
eBook Packages: Computer ScienceComputer Science (R0)