Skip to main content

An Embedded Cost Learning Framework Based on Cumulative Gradient Rewards

  • Conference paper
  • First Online:
Artificial Intelligence Security and Privacy (AIS&P 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14509))

  • 204 Accesses

Abstract

The structure of the Generative Adversarial Network (GAN) has demonstrated good performance in various tasks, mainly comprising two competing sub-networks. The GAN has the potential to effectively generate artificial samples that closely resemble the actual sample distribution. The field of steganography utilizing the Generative Adversarial Network (GAN) structure has witnessed a wealth of research with highly successful outcomes. This paper proposes a steganography framework that integrates reinforcement learning and introduces a new reward function to analyze the embedding cost of images in the steganography problem. In this framework, the reward function assigns distortion values to each pixel of the image and relates the security performance of steganography. Based on the conducted experiments, an enhanced steganographic embedding scheme can ultimately be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Filler, T., Judas, J., Fridrich, J.J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3–2), 920–935 (2011)

    Article  Google Scholar 

  2. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  3. Holub, V., Fridrich, J.J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security, WIFS 2012, Costa Adeje, Tenerife, Spain, 2–5 December 2012, pp. 234–239. IEEE (2012)

    Google Scholar 

  4. Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing, ICIP 2014, Paris, France, 27–30 October 2014, pp. 4206–4210. IEEE (2014)

    Google Scholar 

  5. Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography, pp. 4206–4210 (2014)

    Google Scholar 

  6. Sedighi, V., Cogranne, R., Fridrich, J.J.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2016)

    Article  Google Scholar 

  7. Tang, W., Tan, S., Li, B., Huang, J.: Automatic steganographic distortion learning using a generative adversarial network. IEEE Sig. Process. Lett. 24(10), 1547–1551 (2017)

    Article  Google Scholar 

  8. Xu, G., Wu, H., Shi, Y.: Structural design of convolutional neural networks for steganalysis. IEEE Sig. Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  9. Tang, W., Li, B., Barni, M., Li, J., Huang, J.: An automatic cost learning framework for image steganography using deep reinforcement learning. IEEE Trans. Inf. Forensics Secur. 16, 952–967 (2021)

    Article  Google Scholar 

  10. Mo, X., Tan, S., Li, B., Huang, J.: MCTSteg: a Monte Carlo tree search-based reinforcement learning framework for universal non-additive steganography. IEEE Trans. Inf. Forensics Secur. 16, 4306–4320 (2021)

    Article  Google Scholar 

  11. Mo, X., Tan, S., Tang, W., Li, B., Huang, J.: ReLOAD: using reinforcement learning to optimize asymmetric distortion for additive steganography. IEEE Trans. Inf. Forensics Secur. 18, 1524–1538 (2023)

    Article  Google Scholar 

  12. Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: secure steganography based on generative adversarial networks. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds.) PCM 2017, Revised Selected Papers, Part I. LNCS, vol. 10735, pp. 534–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77380-3_51

    Chapter  Google Scholar 

  13. Volkhonskiy, D., Nazarov, I., Burnaev, E.: Steganographic generative adversarial networks. In: Osten, W., Nikolaev, D.P. (eds.) Twelfth International Conference on Machine Vision, ICMV 2019, SPIE Proceedings, Amsterdam, The Netherlands, 16–18 November 2019, vol. 11433, p. 114333M. SPIE (2019)

    Google Scholar 

  14. Yedroudj, M., Comby, F., Chaumont, M.: Steganography using a 3-player game. J. Vis. Commun. Image Represent. 72, 102910 (2020)

    Article  Google Scholar 

  15. Zhang, R., Dong, S., Liu, J.: Invisible steganography via generative adversarial networks. Multim. Tools Appl. 78(7), 8559–8575 (2019)

    Article  Google Scholar 

  16. Hayes, J., Danezis, G.: Generating steganographic images via adversarial training, pp. 1954–1963 (2017)

    Google Scholar 

  17. Zhang, K.A., Cuesta-Infante, A., Xu, L., Veeramachaneni, K.: SteganoGAN: high capacity image steganography with GANs. CoRR abs/1901.03892 (2019)

    Google Scholar 

  18. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: HiDDeN: hiding data with deep networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part XV. LNCS, vol. 11219, pp. 682–697. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_40

    Chapter  Google Scholar 

  19. Baluja, S.: Hiding images in plain sight: deep steganography. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 2069–2079 (2017)

    Google Scholar 

  20. Fridrich, J.J., Kodovský, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  21. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.A.: Deterministic policy gradient algorithms. In: Proceedings of the 31th International Conference on Machine Learning, JMLR Workshop and Conference Proceedings, ICML 2014, Beijing, China, 21–26 June 2014, vol. 32, pp. 387–395. JMLR.org (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (Grant 62002075), Guangdong Basic and Applied Basic Research Foundation (Grant 2023A1515011428), the Science and Technology Foundation of Guangzhou (Grant 2023A04J1723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixuan Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, W., Xie, Y. (2024). An Embedded Cost Learning Framework Based on Cumulative Gradient Rewards. In: Vaidya, J., Gabbouj, M., Li, J. (eds) Artificial Intelligence Security and Privacy. AIS&P 2023. Lecture Notes in Computer Science, vol 14509. Springer, Singapore. https://doi.org/10.1007/978-981-99-9785-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9785-5_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9784-8

  • Online ISBN: 978-981-99-9785-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics