Skip to main content

KEP: Keystroke Evoked Potential for EEG-Based User Authentication

  • Conference paper
  • First Online:
Artificial Intelligence Security and Privacy (AIS&P 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14509))

  • 712 Accesses

Abstract

In recent years, the rapid proliferation of Brain-Computer Interface (BCI) applications has made the issue of security increasingly important. User authentication serves as the cornerstone of any secure BCI systems, and among various methods, EEG-based authentication is particularly well-suited for BCIs. However, existing paradigms, such as visual evoked potentials and motor imagery, demand significant user efforts during both enrollment and authentication phases. To address these challenges, we introduce a novel paradigm–Keystroke Evoked Potentials (KEP) for EEG-based authentication, which is secure, user-friendly, and lightweight. Then, we design an authentication system based on our proposed KEP. The core concept involves generating a shared cryptographic session key derived from EEG data and keystroke dynamics captured during random button-pressing activities. This shared key is subsequently employed in a Diffie-Hellman Encrypted Key Exchange (DH-EKE) to facilitate device pairing and establish a secure communication channel. Based on a collected dataset, the results demonstrate that our system is secure against various attacks (e.g., mimicry attack, replay attack) and efficient in practice (e.g., taking only 0.07 s to generate 1 bit).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barker, E.: NIST Special Publication 800–57 Part 1 Revision 5: Recommendation for Key Management. https://doi.org/10.6028/NIST.SP.800-57pt1r5

  2. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks (1992)

    Google Scholar 

  3. Bhalerao, S., Ansari, I., Kumar, A.: Protection of BCI system via reversible watermarking of EEG signal. Electron. Lett. 56(25), 1389–1392 (2020)

    Article  Google Scholar 

  4. Bialas, K., Kedziora, M., Chalupnik, R., Song, H.H.: Multifactor authentication system using simplified EEG brain-computer interface. IEEE Trans. Hum. Mach. Syst. 52(5), 867–876 (2022)

    Article  Google Scholar 

  5. Buciu, I., Gacsadi, A.: Biometrics systems and technologies: a survey. Int. J. Comput. Commun. Control 11(3), 315–330 (2016)

    Article  Google Scholar 

  6. Casanova, A., Cascone, L., Castiglione, A., Meng, W., Pero, C.: User recognition based on periocular biometrics and touch dynamics. Pattern Recognit. Lett. 148, 114–120 (2021)

    Article  Google Scholar 

  7. Chiu, W.-Y., Meng, W., Li, W.: I can think like you! Towards reaction spoofing attack on brainwave-based authentication. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds.) SpaCCS 2020. LNCS, vol. 12382, pp. 251–265. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68851-6_18

    Chapter  Google Scholar 

  8. Cornelius, C.T., Kotz, D.F.: Recognizing whether sensors are on the same body. Pervasive Mob. Comput. 8(6), 822–836 (2012)

    Article  Google Scholar 

  9. El-Fiqi, H., Wang, M., Salimi, N., Kasmarik, K., Barlow, M., Abbass, H.: Convolution neural networks for person identification and verification using steady state visual evoked potential. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1062–1069. IEEE (2018)

    Google Scholar 

  10. Gleerup, T., Li, W., Tan, J., Wang, Y.: Zoompass: A zoom-based android unlock scheme on smart devices. In: Su, C., Sakurai, K., Liu, F. (eds.) Science of Cyber Security - 4th International Conference, SciSec 2022, Matsue, Japan, August 10–12, 2022, Revised Selected Papers. Lecture Notes in Computer Science, vol. 13580, pp. 245–259. Springer, Cham (2022)

    Google Scholar 

  11. King, B.J., Read, G.J., Salmon, P.M.: The risks associated with the use of brain-computer interfaces: a systematic review. Int. J. Hum. Comput. Interact. 1–18 (2022)

    Google Scholar 

  12. Kirovski, D., Sinclair, M., Wilson, D.: The martini synch. Microsoft Research, Cambridge, UK, Tech. Rep. MSR-TR-2007-123 (2007)

    Google Scholar 

  13. Klonovs, J., Petersen, C.K., Olesen, H., Hammershøj, A.: ID proof on the Go: Development of a mobile EEG-based biometric authentication system. IEEE Veh. Technol. Mag. 8(1), 81–89 (2013)

    Article  Google Scholar 

  14. Li, W., Gleerup, T., Tan, J., Wang, Y.: A security enhanced android unlock scheme based on pinch-to-zoom for smart devices. IEEE Trans. Consum. Electron. 1–9 (2023)

    Google Scholar 

  15. Li, W., Meng, W., Furnell, S.: Exploring touch-based behavioral authentication on smartphone email applications in IoT-enabled smart cities. Pattern Recognit. Lett. 144, 35–41 (2021)

    Article  Google Scholar 

  16. Li, W., Tan, J., Meng, W., Wang, Y.: A swipe-based unlocking mechanism with supervised learning on smartphones: design and evaluation. J. Netw. Comput. Appl. 165, 102687 (2020)

    Article  Google Scholar 

  17. Li, W., Tan, J., Meng, W., Wang, Yu., Li, J.: SwipeVLock: a supervised unlocking mechanism based on swipe behavior on smartphones. In: Chen, X., Huang, X., Zhang, J. (eds.) ML4CS 2019. LNCS, vol. 11806, pp. 140–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30619-9_11

    Chapter  Google Scholar 

  18. Li, W., Tan, J., Zhu, N.: Double-x: Towards double-cross-based unlock mechanism on smartphones. In: Meng, W., Fischer-Hübner, S., Jensen, C.D. (eds.) ICT Systems Security and Privacy Protection - 37th IFIP TC 11 International Conference, SEC 2022, Copenhagen, Denmark, June 13–15, 2022, Proceedings. IFIP Advances in Information and Communication Technology, vol. 648, pp. 412–428. Springer, Cham (2022)

    Google Scholar 

  19. Li, W., Tan, J., Zhu, N.: Design of double-cross-based smartphone unlock mechanism. Comput. Secur. 129, 103204 (2023)

    Article  Google Scholar 

  20. Li, W., Tan, J., Zhu, N., Wang, Yu.: Designing double-click-based unlocking mechanism on smartphones. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds.) SpaCCS 2020. LNCS, vol. 12383, pp. 573–585. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68884-4_47

    Chapter  Google Scholar 

  21. Li, W., Wang, Y., Li, J., Xiang, Y.: Toward supervised shape-based behavioral authentication on smartphones. J. Inf. Secur. Appl. 55, 102591 (2020)

    Google Scholar 

  22. Li, W., Wang, Y., Tan, J., Zhu, N.: DCUS: evaluating double-click-based unlocking scheme on smartphones. Mob. Networks Appl. 27(1), 382–391 (2022)

    Article  Google Scholar 

  23. Liew, S.H., Choo, Y.H., Low, Y.F., Yusoh, Z.I.M.: Identifying visual evoked potential (VEP) electrodes setting for person authentication. Int. J. Adv. Soft Comput. Appl 7(3), 85–99 (2015)

    Google Scholar 

  24. Lin, Q., et al.: H2B: heartbeat-based secret key generation using piezo vibration sensors. In: Proceedings of the 18th International Conference on Information Processing in Sensor Networks, pp. 265–276 (2019)

    Google Scholar 

  25. Meng, W., Li, W., Jiang, L., Zhou, J.: SocialAuth: designing touch behavioral smartphone user authentication based on social networking applications. In: Dhillon, G., Karlsson, F., Hedström, K., Zúquete, A. (eds.) SEC 2019. IAICT, vol. 562, pp. 180–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22312-0_13

    Chapter  Google Scholar 

  26. Meng, W., Li, W., Kwok, L., Choo, K.R.: Towards enhancing click-draw based graphical passwords using multi-touch behaviours on smartphones. Comput. Secur. 65, 213–229 (2017)

    Article  Google Scholar 

  27. Meng, W., Li, W., Wong, D.S.: Enhancing touch behavioral authentication via cost-based intelligent mechanism on smartphones. Multim. Tools Appl. 77(23), 30167–30185 (2018)

    Article  Google Scholar 

  28. Meng, W., Li, W., Wong, D.S., Zhou, J.: TMGuard: a touch movement-based security mechanism for screen unlock patterns on smartphones. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 629–647. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_34

    Chapter  Google Scholar 

  29. Meng, W., Liu, Z.: TMGMap: designing touch movement-based geographical password authentication on smartphones. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp. 373–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99807-7_23

    Chapter  Google Scholar 

  30. Meng, W., Wang, Y., Wong, D.S., Wen, S., Xiang, Y.: TouchWB: touch behavioral user authentication based on web browsing on smartphones. J. Netw. Comput. Appl. 117, 1–9 (2018)

    Article  Google Scholar 

  31. Meng, W., Wong, D.S., Furnell, S., Zhou, J.: Surveying the development of biometric user authentication on mobile phones. IEEE Commun. Surv. Tutorials 17(3), 1268–1293 (2015)

    Article  Google Scholar 

  32. Meng, W., Wong, D.S., Kwok, L.: The effect of adaptive mechanism on behavioural biometric based mobile phone authentication. Inf. Manag. Comput. Secur. 22(2), 155–166 (2014)

    Article  Google Scholar 

  33. Meng, Y., Li, W., Kwok, L.-F.: Enhancing click-draw based graphical passwords using multi-touch on mobile phones. In: Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IAICT, vol. 405, pp. 55–68. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39218-4_5

    Chapter  Google Scholar 

  34. Muller-Putz, G.R., Scherer, R., Neuper, C., Pfurtscheller, G.: Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 30–37 (2006)

    Article  Google Scholar 

  35. Nakamura, T., Goverdovsky, V., Mandic, D.P.: In-ear EEG biometrics for feasible and readily collectable real-world person authentication. IEEE Trans. Inf. Forensics Secur. 13(3), 648–661 (2018)

    Article  Google Scholar 

  36. Pham, T., Ma, W., Tran, D., Nguyen, P., Phung, D.Q.: Multi-factor EEG-based user authentication. In: 2014 International Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, July 6–11, 2014, pp. 4029–4034. IEEE (2014)

    Google Scholar 

  37. Rostami, M., Juels, A., Koushanfar, F.: Heart-to-heart (H2H) authentication for implanted medical devices. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 1099–1112 (2013)

    Google Scholar 

  38. Rukhin, A., et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications, vol. 22. US Department of Commerce, Technology Administration, National Institute of \(\ldots \) (2001)

    Google Scholar 

  39. Schürmann, D., Brüsch, A., Sigg, S., Wolf, L.: Bandana-body area network device-to-device authentication using natural gait. In: 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 190–196. IEEE (2017)

    Google Scholar 

  40. Sun, Y., Meng, W., Li, W.: Designing in-air hand gesture-based user authentication system via convex hull. In: 19th Annual International Conference on Privacy, Security & Trust, PST 2022, Fredericton, NB, Canada, August 22–24, 2022, pp. 1–5. IEEE (2022)

    Google Scholar 

  41. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  42. Wolpaw, J.R., del R. Millán, J., Ramsey, N.F.: Chapter 2 - brain-computer interfaces: Definitions and principles. In: Ramsey, N.F., del R. Millán, J. (eds.) Brain-Computer Interfaces, Handbook of Clinical Neurology, vol. 168, pp. 15–23. Elsevier (2020)

    Google Scholar 

  43. Wu, B., Meng, W., Chiu, W.: Towards enhanced EEG-based authentication with motor imagery brain-computer interface. In: Annual Computer Security Applications Conference, ACSAC 2022, Austin, TX, USA, December 5–9, 2022, pp. 799–812. ACM (2022)

    Google Scholar 

  44. Wu, Y., Lin, Q., Jia, H., Hassan, M., Hu, W.: Auto-key: using autoencoder to speed up gait-based key generation in body area networks. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 4(1), 1–23 (2020)

    Article  Google Scholar 

  45. Xu, W., Revadigar, G., Luo, C., Bergmann, N., Hu, W.: Walkie-talkie: motion-assisted automatic key generation for secure on-body device communication. In: 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 1–12. IEEE (2016)

    Google Scholar 

  46. Yadav, V.K., Yadav, R.K., Chaurasia, B.K., Verma, S., Venkatesan, S.: MITM attack on modification of Diffie-Hellman key exchange algorithm. In: Communication, Networks and Computing: Second International Conference, CNC 2020, Gwalior, India, pp. 144–155 (2021)

    Google Scholar 

  47. Zhang, S., Sun, L., Mao, X., Hu, C., Liu, P., et al.: Review on EEG-based authentication technology. Comput. Intell. Neurosci. 2021, 20 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhi Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Chiu, WY., Meng, W. (2024). KEP: Keystroke Evoked Potential for EEG-Based User Authentication. In: Vaidya, J., Gabbouj, M., Li, J. (eds) Artificial Intelligence Security and Privacy. AIS&P 2023. Lecture Notes in Computer Science, vol 14509. Springer, Singapore. https://doi.org/10.1007/978-981-99-9785-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9785-5_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9784-8

  • Online ISBN: 978-981-99-9785-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics