Skip to main content

An Industrial Robot Path Planning Method Based onĀ Improved Whale Optimization Algorithm

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2023)

Abstract

With the development of technology, robots are gradually being used more and more widely in various fields. Industrial robots need to perform path planning in the course of their tasks, but there is still a lack of a simple and effective method to implement path planning in complex industrial scenarios. In this paper, an improved whale optimization algorithm is proposed to solve the robot path planning problem. The algorithm initially uses a logistic chaotic mapping approach for population initialization to enhance the initial population diversity, and proposes a jumping mechanism to help the population jump out of the local optimum and enhance the global search capability of the population. The proposed algorithm is tested on 12 complex test functions and the experimental results show that the improved algorithm achieves the best results in several test functions. The algorithm is then applied to a path planning problem and the results show that the algorithm can help the robot to perform correct and efficient path planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong, Q., et al.: A dynamic demand-driven smart manufacturing for mass individualization production. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3297ā€“3302. IEEE (2021)

    Google ScholarĀ 

  2. Dong, C., et al.: A cost-driven method for deep-learning-based hardware trojan detection. Sensors 23(12), 5503 (2023)

    ArticleĀ  Google ScholarĀ 

  3. Chen, Z., et al.: 6G mobile communications for multi-robot smart factory. J. ICT Stand. 9, 371ā€“404 (2021)

    Google ScholarĀ 

  4. Fountas, S., et al.: Agricultural robotics for field operations. Sensors 20(9), 2672 (2020)

    ArticleĀ  Google ScholarĀ 

  5. Bistron, M., Piotrowski, Z.: Artificial intelligence applications in military systems and their influence on sense of security of citizens. Electronics 10(7), 871 (2021)

    ArticleĀ  Google ScholarĀ 

  6. Dupont, P.E., et al.: A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 6(60), eabi8017 (2021)

    ArticleĀ  Google ScholarĀ 

  7. Nair, V.G., Guruprasad, K.R.: 2 D-VPC: an efficient coverage algorithm for multiple autonomous vehicles. Int. J. Control Autom. Syst. 19(8), 2891ā€“2901 (2021)

    ArticleĀ  Google ScholarĀ 

  8. Dong, C., et al.: A dynamic distributed edge-cloud manufacturing with improved ADMM algorithms for mass personalization production. J. King Saud Univ. Comput. Inf. Sci. 35(8), 101632 (2023)

    Google ScholarĀ 

  9. Yang, Y., Juntao, L., Lingling, P.: Multi-robot path planning based on a deep reinforcement learning DQN algorithm. CAAI Trans. Intell. Technol. 5(3), 177ā€“183 (2020)

    ArticleĀ  Google ScholarĀ 

  10. Zheng, Q., et al.: An improved deep reinforcement learning for robot navigation. In: Third International Conference on Machine Learning and Computer Application (ICMLCA 2022), vol. 12636, pp. 171ā€“176. SPIE (2023)

    Google ScholarĀ 

  11. Kyprianou, G., Doitsidis, L., Chatzichristofis, S.A.: Towards the achievement of path planning with multi-robot systems in dynamic environments. J. Intell. Robot. Syst. 104(1), 15 (2022)

    ArticleĀ  Google ScholarĀ 

  12. Chen, J., Zhao, Y., Xing, X.: Improved RRT-connect based path planning algorithm for mobile robots. IEEE Access 9, 145988ā€“145999 (2021)

    ArticleĀ  Google ScholarĀ 

  13. Li, Q., et al.: Smart vehicle path planning based on modified PRM algorithm. Sensors 22(17), 6581 (2022)

    ArticleĀ  Google ScholarĀ 

  14. Semnani, S.H., et al.: Multi-agent motion planning for dense and dynamic environments via deep reinforcement learning. IEEE Robot. Autom. Lett. 5(2), 3221ā€“3226 (2020)

    ArticleĀ  Google ScholarĀ 

  15. Lai, X., Li, J.H., Chambers, J.: Enhanced center constraint weighted a* algorithm for path planning of petrochemical inspection robot. J. Intell. Robot. Syst. 102, 1ā€“15 (2021)

    ArticleĀ  Google ScholarĀ 

  16. Huang, T., et al.: Path planning and control of a quadrotor UAV based on an improved APF using parallel search. Int. J. Aerosp. Eng. 2021, 1ā€“14 (2021)

    Google ScholarĀ 

  17. Gao, W., et al.: An enhanced heuristic ant colony optimization for mobile robot path planning. Soft. Comput. 24, 6139ā€“6150 (2020)

    ArticleĀ  Google ScholarĀ 

  18. Miao, C., et al.: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Comput. Ind. Eng. 156, 107230 (2021)

    ArticleĀ  Google ScholarĀ 

  19. Song, B., Wang, Z., Zou, L.: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. 100, 106960 (2021)

    ArticleĀ  Google ScholarĀ 

  20. Zhang, T.-W., et al.: A new hybrid algorithm for path planning of mobile robot. J. Supercomputing 78(3), 4158ā€“4181 (2022)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  21. GarcĆ­a, E., et al.: An efficient multi-robot path planning solution using A* and coevolutionary algorithms. Integr. Comput. Aided Eng. 30(1), 41ā€“52 (2023)

    ArticleĀ  Google ScholarĀ 

  22. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51ā€“67 (2016)

    ArticleĀ  Google ScholarĀ 

  23. Wang, X., Guan, N., Yang, J.: Image encryption algorithm with random scrambling based on one-dimensional logistic selfembedding chaotic map. Chaos, Solitons Fractals 150, 111117 (2021)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This work is supported by the fund of Fujian Province Digital Economy Alliance, the National Natural Science Foundation of China (No. U1905211), and the Natural Science Foundation of Fujian Province (No. 2020J01500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, P., Dong, C., Chen, Z., Zhen, Z., Jiang, L. (2024). An Industrial Robot Path Planning Method Based onĀ Improved Whale Optimization Algorithm. In: Jin, H., Yu, Z., Yu, C., Zhou, X., Lu, Z., Song, X. (eds) Green, Pervasive, and Cloud Computing. GPC 2023. Lecture Notes in Computer Science, vol 14503. Springer, Singapore. https://doi.org/10.1007/978-981-99-9893-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9893-7_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9892-0

  • Online ISBN: 978-981-99-9893-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics