Skip to main content

A Method for Small Object Contamination Detection of Lentinula Edodes Logs Integrating SPD-Conv and Structural Reparameterization

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2023)

Abstract

A small object contamination detection method (SRW-YOLO) integrating SPD-Conv and structural reparameterization was proposed to address the problem of the difficulty in the detection of small object contaminated areas of Lentinula Edodes logs. First, the SPD (space-to-depth)-Conv was used to improve the MP module to enhance the learning of effective features of Lentinula Edodes log images and prevent the loss of small object contamination information. Meanwhile, RepVGG was introduced into the ELAN structure to improve the efficiency and accuracy of inference on the contaminated regions of Lentinula Edodes logs through structural reparameterization. Finally, the boundary regression loss function was replaced with the WIoU (Wise-IoU) loss function, which focuses more on ordinary-quality anchor boxes and makes the model output results more accurate. In this study, the measures of Precision, Recall, and reached 97.63%, 96.43%, and 98.62%, respectively, which are 4.62%, 3.63%, and 2.31% higher compared to those for YOLOv7. Meanwhile, the SRW-YOLO model detects better compared with the current advanced one-stage object detection model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Z., Wang, S., Zheng, S., et al.: Identification of Paecilomyces variotii and its interaction with Lentinula edodes mycelium. North Horticulture 509(14), 116–125 (2022)

    Google Scholar 

  2. Wang, Y., Liu, Z., Feng, Y., et al.: Study on the infection process of Trichoderma in the production of Lentinus edodes. Seed 40(6), 131–141 (2021)

    Google Scholar 

  3. Yao, Q., Gong, Z., Si, H., et al.: Study on the formulation of culture substrate of lentinus edodes with resistance to hybrid bacteria. Chin. J. Edible Fungi 39(10), 56–58 (2020)

    Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  5. O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V., Krpalkova, L., Riordan, D., Walsh, J.: Deep learning vs. traditional computer vision. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 943, pp. 128–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9_10

    Chapter  Google Scholar 

  6. Kim, J., Kim, B., Roy, P., et al.: Efficient facial expression recognition algorithm based on hierarchical deep neural network structure. IEEE Access 7, 41273–41285 (2019)

    Article  Google Scholar 

  7. Jeppesen, J., Jacobsen, R., Inceoglu, F., et al.: A cloud detection algorithm for satellite imagery based on deep learning. Remote Sens. Environ. 229, 247–259 (2019)

    Article  Google Scholar 

  8. Liu, J., Wang, X.: Plant diseases and pests detection based on deep learning: a review. Plant Methods 17(22), 1–18 (2021)

    Google Scholar 

  9. Si, M., Deng, M., Han, Y.: Using deep learning for soybean pest and disease classification in farmland. J. Northeast. Agric. Univ. 26(1), 64–72 (2019)

    Google Scholar 

  10. Jiang, P., Chen, Y., Liu, B., et al.: Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks. IEEE Access 7, 59069–59080 (2019)

    Article  Google Scholar 

  11. Zu, D., Zhang, F., Wu, Q., et al.: Disease identification of Lentinus edodes sticks based on deep learning model. Complexity 2022, 1–9 (2022)

    Article  Google Scholar 

  12. Zu, D., Zhang, F., Wu, Q., et al.: Sundry bacteria contamination identification of Lentinula Edodes logs based on deep learning model. Agronomy 12(9), 2121 (2022)

    Article  Google Scholar 

  13. Han, J., Ding, J., Xue, N., et al.: ReDet: a rotation-equivariant detector for aerial object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2786–2795. IEEE, Nashville, TN, USA (2021)

    Google Scholar 

  14. Zand, M., Etemad, A., Greenspan, M.: Oriented bounding boxes for small and freely rotated objects. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2021)

    Article  Google Scholar 

  15. Yu, D., Xu, Q., Guo, H., et al.: Anchor-free arbitrary-oriented object detector using box boundary-aware vectors. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 15, 2535–2545 (2022)

    Article  Google Scholar 

  16. Zhu, X., Lyu, S., Wang, X., et al.: TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2778–2788. IEEE, Montreal, BC, Canada (2021)

    Google Scholar 

  17. Benjumea, A., Teeti, I,, Cuzzolin, F., et al.: YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles (2021). arXiv preprint arXiv:2112.11798

  18. Wang, C., Bochkovskiy, A., Liao, H.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022). arXiv preprint arXiv:2207.02696

  19. Sunkara, R., Luo, T.: No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects. Lect. Notes Comput. 13715, 443–459 (2023)

    Article  Google Scholar 

  20. Wang, C., Liao, H., Yeh, I.: Designing network design strategies through gradient path analysis (2022). arXiv preprint arXiv:2211.04800

  21. Ding, X., Zhang, X., Ma, N., et al.: RepVGG: making VGG-style convents great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742. IEEE, Nashville, TN, USA (2021)

    Google Scholar 

  22. Tong, Z., Chen, Y., Xu, Z., et al.: Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism (2023). arXiv preprint arXiv:2301.10051

  23. Selvaraju, R., Cogswell, M., Das, A., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626. IEEE, Venice, Italy (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Wenhui Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Q., Chen, X., Shang, S., Zhang, F., Tan, W. (2024). A Method for Small Object Contamination Detection of Lentinula Edodes Logs Integrating SPD-Conv and Structural Reparameterization. In: Jin, H., Yu, Z., Yu, C., Zhou, X., Lu, Z., Song, X. (eds) Green, Pervasive, and Cloud Computing. GPC 2023. Lecture Notes in Computer Science, vol 14503. Springer, Singapore. https://doi.org/10.1007/978-981-99-9893-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9893-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9892-0

  • Online ISBN: 978-981-99-9893-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics