
Please do not remove this page

A comparison of BDI based real-time reasoning
and HTN based planning
De Silva, Lavindra; Padgham, Lin
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/A-comparison-of-BDI-based-real-time/9921858072401341/filesAndLink
s?index=0

De Silva, L., & Padgham, L. (2004). A comparison of BDI based real-time reasoning and HTN based
planning. AI 2004: Advances in Artificial Intelligence, 1167–1173. https://doi.org/10.1007/b104336

Published Version: https://doi.org/10.1007/b104336

Document Version: Accepted Manuscript

Downloaded On 2024/05/03 08:05:15 +1000
© Springer-Verlag Berlin Heidelberg 2003
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/A-comparison-of-BDI-based-real-time/9921858072401341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/A-comparison-of-BDI-based-real-time/9921858072401341
http://doi.org/doi:https://doi.org/10.1007/b104336
https://researchrepository.rmit.edu.au


A Comparison of BDI Based Real-Time Reasoning and
HTN Based Planning

Lavindra de Silva and Lin Padgham

{ldesilva,linpa}@cs.rmit.edu.au

School of Computer Science and Information Technology
RMIT University, Melbourne, Vic., Australia, 3000

Abstract. The Belief-Desire-Intention (BDI) model of agency is an architecture
based on Bratman’s theory of practical reasoning. Hierarchical Task Network
(HTN) decomposition on the other hand is a planning technique which has its
roots in classical planning systems such as STRIPS. Despite being used for dif-
ferent purposes, HTN and BDI systems appear to have a lot of similarities in the
problem solving approaches they adopt. This paper presents these similarities.
A systematic method for mapping between the two systems is developed, and
experimental results for different kinds of environments are presented.

1 Introduction
The Belief-Desire-Intention (BDI) [1] agent development framework (e.g. JACK [2]
and PRS [3]) appears in many ways to be very similar to the Hierarchical Task Network
(HTN) approach to planning (e.g. UMCP [4], SHOP [5]), although the former arises
out of the multi-agent systems community, while the latter arises out of the planning
community.

Both BDI and HTN systems use a notion of decomposition, and flexible composi-
tion of parts, although BDI systems are primarily used for deciding goal directed agent
actions in dynamic environments, while HTN systems are used for formulating a plan
which is later executed.

Earlier research (e.g. [6, 7]) mentions similarities between HTN planning and BDI
style execution. The work most closely related to ours is in the ACT formalisms of the
Cypress system [7]. Work done for Cypress is different to our work in that ACT is an
interlingua that enables the two systems to share information, whereas we provide a
mapping between HTN and BDI systems. Furthermore, the HTN planner in Cypress is
a partial-order HTN planner, whereas we use a total-order (hereafter referred to simply
as HTN) HTN planner.

Despite the close similarities of HTN and BDI systems, there does not appear to be
any work done which systematically contrasts and compares the core approaches and al-
gorithms developed in the two communities. This paper provides a detailed comparison
between the two approaches, including a mapping from HTN to BDI representations.
We also explore the efficiency of the underlying algorithms of the two kinds of systems,
via experimentation in varying situations. This work provides a basis on which applica-
tion developers can choose the preferred implementation platform, as well as providing
some insights into how frameworks in either paradigm may be improved.

E72418
Typewritten Text
Citation: De Silva, L and Padgham, L 2004, 'A comparison of BDI based real-time reasoning and HTN based planning', in G. Webb & X. Yu (ed.) AI 2004: Advances in Artificial Intelligence, Cairns, 24 November 2004

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text



2 Similarities and Differences between HTN and BDI
Both HTN planners and BDI agent execution systems create solutions by decomposing
high level tasks (or goals) into more specific tasks and primitive actions. The tasks as
well as the decomposition methods (or plans) are specified by the programmer in both
cases.

However, the systems (usually) serve a different purpose in that HTN planners are
used to efficiently find a plan, which can then be executed, whereas BDI systems are
used to guide execution in real time. There is some work on interleaving planning and
execution, using HTN planners [6], which is then very similar in style to BDI execution
and is therefore suitable for guiding actions in dynamic environments. BDI systems
can also be used to search for a solution before executing it, in situations where this is
appropriate or desirable.

PayDriverEftposPayDriverCashPayDriverCashWait

Wait−At−Stop Pay−Driver

Bus Walk Taxi

Pay−Driver

Go−To−Destination

VisitPlaces

Visit

Fig. 1. Goal-plan hierarchy in BDI or Task-network in HTN.

An example of a goal-plan hierarchy in BDI or a task network in HTN is shown
in Figure 11. In this Figure, circles represent BDI goals or HTN abstract tasks and
rectangles represent BDI plans or HTN methods. The hierarchy begins by having a
goal/task to make a visit which can be achieved by (decomposed into) the VisitPlaces
plan (method). This plan (method) has a goal (task) to go to the destination which in
turn can be achieved by (decomposed using) one of the three plans (methods): Bus,
Walk or Taxi, etc.

The fact that this structure can equally well represent an HTN task network, or a BDI
goal-plan tree, indicates a certain similarity between the systems. Also, the approach of
returning to try an alternative path through the tree if difficulties are encountered, is
similar in both cases.

However reasons for “backtracking” in this structure are subtly different. BDI sys-
tems will backtrack only if there has been some failure - usually caused by some change
in the environment, or by the lack of complete predictability of actions. HTN systems
backtrack when a solution that has been pursued, turns out not to work. There is no
opportunity for discovering problems within the environment, during the planning pro-
cess.

If we are to compare execution of HTN and BDI systems we need to choose a
particular HTN and BDI system to work with, and then map programs between the
two systems. The HTN system we use is JSHOP which is a Java version of the SHOP
planner. JSHOP is being used by the Naval Research Laboratory for Noncombatant

1 This example was taken from [5] and extended.

2



Evacuation Operations 2. SHOP2 is a generalization of SHOP/JSHOP that won one of
the top four prizes in the 2002 International Planning Competition.

We have developed a systematic translation that we have used to convert JSHOP
programs to JACK programs. The translation deals with the main entities of JSHOP,
which are methods, operators and axioms [5], whereas the main entities of BDI accord-
ing to [8], are plans, goals or events and beliefs3.

3 Experimental Comparison

0 50 100 150
Number of Blocks 

0

100

200

300

400

T
im

e 
T

ak
en

 (s
ec

) 

A: Solution Time 

JSHOP 
JACK 

0 20 40 60 80 100
Rate of Change as % of Optimal Time 

0

100

200

300

400

T
im

e 
T

ak
en

 (s
ec

)

B: JSHOP

JSHOP [50 blocks]
JSHOP-optimal (y= 11.4) [50 blocks]

Fig. 2. A: Solution time for JACK and JSHOP with increasing number of blocks, B: and C:
JSHOP and modified JSHOP (respectively) in a dynamic environment

In its original form, BDI systems were designed for use in highly dynamic envi-
ronments, and HTN systems were designed for use when guaranteed solutions were
necessary. Some research also focussed on building hybrid systems that combine the
useful (e.g. [6, 7]) properties of each system. In this section, we provide emperical foun-
dations for past and future work, by analysing how each system performs in different
environments.

In order to compare the performance of BDI and HTN algorithms under differing
problem sizes and environmental situations, we took examples of blocks world encod-
ing provided with JSHOP, extended these, and mapped to JACK, using the mapping
mentioned previously. We then ran experiments to explore time and memory usage in
static and dynamic environments. The Blocks World domain was used because it can
easily be scaled to a range of problem sizes, and also because tested JSHOP encod-
ings [5] for the problem were already provided.

The JSHOP blocks-world domain representation as well as sample problems from
10 blocks to 100 blocks was provided with the JSHOP planner (originally obtained
from [9]). We used the problems provided and created additional problems for 110,
120, 130, 140 and 150 blocks by combining the 100 blocks problem with 10 blocks
problems (including block renumbering). We randomly selected one problem of each

2 http://www.cs.umd.edu/projects/shop/description.html
3 We leave out the details due to space restrictions. See http://www.cs.rmit.edu.au/ ldesilva for a

more detailed paper.

3



size, for problems of size 10-100. Each problem was specified in terms of the start
position of all blocks, and a goal state specifying the position of all blocks.

The program encoding consisted of one compound task move, with four different
decompositions for achieving it, each having a different precondition. The primitive
actions consisted of four operators; pickup, putdown, stack and unstack. Due to space
constraints, refer to [9] for full details. An axiom was used to indicate whether a block
needed to be moved. This need-to-move(x) axiom (where x is a block) evaluates to true
or false based on whether one of a number of conditions are met. For example, need-
to-move(x) would be true if x is on the table and there is a goal state requiring x to be
on some other block. This heuristic allowed problems in this particular encoding of the
blocks-world to be solved without needing HTN style lookahead, since standard BDI
reasoning is not capable of such lookahead.

The mapping techniques we had developed were then used to translate from JSHOP
to JACK representation for each problem.

The experiments were run on a dedicated machine, running Linux Red Hat 8.0,
with an Intel Pentium IV - 2GHz CPU, and 512MB of memory. Each experiment was
an average of 10 runs. Measurements taken were time4/memory required to create a so-
lution. In JACK, the solution is found through execution in a simulator, whereas JSHOP
produces the solution as a list of actions, which is then executed in the simulator.

The experiments performed explored: 1) Runtime in static environments of size 10-
150 blocks, 2) Runtime in dynamic environments of size 30 - 50 blocks, 3) Memory
usage in environments of size 10-100 blocks.

3.1 Runtime in static environment
The first experiment compared the time taken in both systems to find one solution, with
an increasing number of blocks. Figure 2A shows these results.

For Figure 2A, DeltaGraph5 showed that the time taken by JSHOP is approximately
0.03x

2, which is quadratic, while time taken by JACK is approximately 0.02x, which
is linear. Statistical results also confirmed that these two graphs were significantly dif-
ferent.

Further experiments to understand JSHOP’s quadratic performance revealed that
JSHOP’s precondition evaluation algorithm took at least 75 percent of the processing
time, in particular, its unification algorithm used from within theorem prover. The uni-
fication algorithm was not complex in itself, but had a high frequency of calls. A more
complete analysis of runtime in a static environment is left as future work.

Experiments for the memory usage of JSHOP and JACK using problem sizes of
10-100 blocks showed the same pattern as that of Figure 2A for unmodified JSHOP.

3.2 Runtime in dynamic environment
For these experiments a dynamic Blocks World environment was used, where a random
move action was introduced periodically. This simulated a situation where the environ-
ment is changing outside of the control or actions of the agent. The externally intro-
duced move action was selected by randomly choosing (source and destination) from
among the blocks that were currently clear. Differing rates of change were used, with

4 Using the time command, the CPU + system times spent in execution.
5 http://www.redrocksw.com/deltagraph/

4



the slowest rate being the time taken to execute the entire solution in a static environ-
ment. We call this time the optimal time (refer to Figure 2A). Slower change than this
would of course have no effect. The dynamism was increased each time by 10 percent
of the slowest rate.

For these experiments, executing the solution found by JSHOP was significant in or-
der to determine whether it actually reached the goal, given the changing environment6.
Failure could occur either when a planned action failed (for example due to a block to
be picked up, no longer being clear), or when the whole plan had been executed, but on
checking the goal had actually not been accomplished, due to environmental changes.
At the point of failure, JSHOP replanned from the new environmental state.

Figure 2B shows the time taken by JSHOP to find a solution for a problem of size
50 blocks, as the dynamism in the environment decreases.7 The horizontal dotted line
crossing the y axis at y=11.4, in Figure 2B, is the optimal time. As the dynamism
increases, the time taken to find a solution also increases at a rate of approximately x

3.
This is because every time the environment changes, JSHOP has to replan for the

new environmental state, although usually it would have moved somewhat closer to
the goal. Therefore as the dynamism increases, the number of plans generated in order
to find a solution is likely to increase. The large standard deviation (dashed vertical
lines) as the dynamism increases is due to the variability in how much of an effect the
environmental change has on plans being created, due to whereabouts in a plan, a failure
occurs.

Experiments with JACK in the same dynamic environment was linear, which showed
that the behaviour of JACK does not appear to be significantly affected by the rate at
which the environment changes (figure not shown due to space constraints). This is to
be expected as plans are chosen in the current environment immediately prior to exe-
cution. In addition a plan choice commits only to relatively few steps, and so if it is
affected by environmental change, only relatively little time is lost. Experiments also
shows that there is not much standard deviation in the results, and that the standard
deviation is consistent, even with an increasing rate of change.

There is an increasing amount of work in adapting HTN planners to interleave ex-
ecution with planning (e.g. [6]), making them operate in some ways more like BDI
agent systems. We adapted JSHOP to execute each method directly after decomposi-
tion, obtaining the experimental results shown in Figure 2C. Note that y=8.5 seconds
was the optimal time for finding a solution, when the first decomposition (with at least
one action) was immediately executed (as opposed to forming a complete solution).

We found the degradation of the system as dynamism increases to be similar to
that of JACK. Further, statistical tests showed that the behaviour of modified JSHOP is
significantly different to the behaviour of the original version of Figure 2B.

4 Discussion and Future Work
On the examples tested, the growth rate of JACK of finding a solution, compared
to JSHOP as problem size increases, is linear as opposed to polynomial. This has

6 The changing environment here means the external environment that JSHOP finds solutions
for and not changes to the initial state during planning.

7 Results were similar for 30 and 40 blocks.

5



a significant impact for large applications. Future work could include an analysis of
JACK’s complexity, in particular, its context condition evaluation, for a comparison
with JSHOP’s complexity in [4]. A complexity analysis may also enable HTN systems
to benefit from faster algorithms used by BDI systems (or at least by JACK).

Although our comparison used a single implementation of a BDI and total-order
HTN each system, we emphasise that we considered the formalisms [8, 5] of two state
of the art systems for our mapping.

Due to the similarity of the core mechanisms in the two paradigms, each can bor-
row some strengths from the other. Since BDI systems allow real time behaviour in
quite dynamic domains, HTN systems can be made to behave like BDI systems in dy-
namic domains by executing methods immediately after decomposition. Alternatively,
BDI agents could use HTN planning in environments when lookahead analysis is neces-
sary to provide guaranteed solutions. In situations where the environment is not highly
dynamic, BDI agents could use HTN lookahead to anticipate and avoid branches in the
BDI hierarchy that would prevent the agent from achieving a goal.

We also acknowledge that both types of systems have strengths and functionality not
covered in this work, which may well make them the system of choice for a particular
application.

5 Acknowledgements
We thank Ugur Kuter, Professor Dana Nau and Fusun Yaman from the University
of Maryland for providing help with the JSHOP formalisms and planner. We thank
Michael Winikoff, John Thangarajah and and Gaya Jayatilleke for comments on this
paper and the RMIT Agents group for constant feedback and support.

References

1. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of the First
International Conference on Multiagent Systems, San Francisco (1995)

2. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: Jack Intelligent Agents - components for
intelligent agents in java. AgentLink News Letter, Agent Oriented Software Pty. Ltd, mel-
bourne (1999)

3. Georgeff, M., Ingrand, F.: Decision making in an embedded reasoning system. In: Proceedings
of the International Joint Conference on Aritificial Intelligence. (1989) 972–978

4. Erol, K., Hendler, J.A., Nau, D.S.: Complexity results for HTN planning. Annals of Mathe-
matics and Artificial Intelligence 18 (1996) 69–93

5. Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: SHOP: Simple Hierarchical Ordered Planner.
In: Proceedings of the International Joint Conference on AI. (1999) 968–973

6. Paolucci, M., Shehory, O., Sycara, K.P., Kalp, D., Pannu, A.: A planning component for
RETSINA agents. In: Agent Theories, Architectures, and Languages. (1999) 147–161

7. Wilkins, D.E., Myers, K.L., Lowrance, J.D., Wesley, L.P.: Planning and reacting in uncertain
and dynamic environments. Journal of Experimental and Theoretical AI 7 (1995) 197–227

8. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: Proceedings of the Eighth International Conference on Principles
of Knowledge Representation and Reasoning (KR2002), Toulouse, France. (2002)

9. Gupta, N., Nau, D.S.: On the complexity of blocks-world planning. Artificial Intelligence 56
(1992) 223–254

6




