Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

We describe how to determine the number of cases that arise in visualization al- gorithms such as Marching Cubes by applying the deBruijn extension of Pólya counting. This technique constructs a polynomial, using the cycle index, encoding the case counts that arise when a discrete function (or “color”) is evaluated at each vertex of a polytope. The technique can serve as a valuable aid in debugging visualization algorithms that extend Marching Cubes, Separating Surfaces, Interval Volumes, Sweeping Simplices, etc., to larger dimensions and to more colors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. David C. Banks and Stephen A. Linton. Counting cases in marching cubes: Toward a generic algorithm for producing substitopes. In Proceedings of Visualization 2003, pages 51–58. IEEE, 2003.

    Google Scholar 

  2. David C. Banks, Stephen A. Linton, and Paul K. Stockmeyer. Counting cases in substitope algorithms. IEEE Transactions on Visualization and Computer Graphics, 10(4):371–384, 2004.

    Article  Google Scholar 

  3. Praveen Bhaniramka, Rephael Wenger, and Roger Crawfis. Isosurfacing in higher dimensions. In Proceedings of IEEE Visualization 2000, pages 267–273. IEEE, 2000.

    Google Scholar 

  4. Jules Bloomenthal. Polygonization of implicit surfaces. In Computer Aided Geometric Design, volume 5, pages 341–355, 1988.

    Google Scholar 

  5. N. G. deBruijn. Generalization of pólya's fundamental theorem in enumerative combinatorial analysis. Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21, pages 59–69, 1959.

    MathSciNet  Google Scholar 

  6. N. G. deBruijn. Pólya's theory of counting. In Edwin F. Bechenbach, editor, Applied Combinatorial Mathematics, pages 144–184. Wiley, New York, 1964.

    Google Scholar 

  7. Frank Harary and Ed Palmer. The power group enumeration theorem. Journal of Combinatorial Theory, 1:157–173, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  8. Frank Harary and Edgar Palmer. Graphical Enumeration. Academic, New York, 1973.

    MATH  Google Scholar 

  9. Hans-Christian Hege, Martin Seebass, Detlev Stalling, and Malte Zöckler. A Generalized Marching Cubes Algorithm Based on Non-Binary Classifications. Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1997. Technical Report SC 97–05.

    Google Scholar 

  10. Ming Jiang, Raghu Machiraju, and David Thompson. A novel approach to vortex core region detection. In Proceedings of the symposium on data visualization 2002, pages 217–225. Eurographics Association, 2002.

    Google Scholar 

  11. Stefan F. Kirchberg. Marching Hypercubes – ein Verfahren zur Konstruktion von Hyperflächen aus 4D-Rasterdaten. Universität Dortmund, 1993. Doplomarbeit am Lehrstuhl 7.

    Google Scholar 

  12. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. In Proceedings of SIGGRAPH 1987, pages 163–169. ACM, 1987.

    Google Scholar 

  13. Gregory M. Nielson and Richard Franke. Computing the separating surface for segmented data. In Proceedings of IEEE Visualization 1997, pages 229–233. IEEE, 1997.

    Google Scholar 

  14. Gregory M. Nielson and Junwon Sung. Interval volume tetrahedrization. In Proceedings of IEEE Visualization 1997, pages 221–228. IEEE, 1997.

    Google Scholar 

  15. E. M. Palmer. Graphical Enumeration and the Power Group (Ph.D. dissertation). University of Michigan, 1965.

    Google Scholar 

  16. G. Pólya. Kombinatorische anzahlbestimmungen für gruppen, graphen und chemische verbindungen. Acta Mathematica, 68:145–254, 1937.

    Article  Google Scholar 

  17. G. Pólya and R. C. Read. Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds. Springer, New York, 1987.

    Book  Google Scholar 

  18. Jonathan C. Roberts and Steve Hill. Piecewise linear hypersurfaces using the marching cubes algorithm. In Robert Erbacher and Alex Pang, editors, Visual Data Exploration and Analysis VI, Proceedings of SPIE, pages 170–181. IS&T and SPIE, January 1999.

    Google Scholar 

  19. Han-Wei Shen and Christopher R. Johnson. Sweeping simplices: A fast iso-surface extraction algorithm for unstructured grids. In Proceedings of IEEE Visualization 1995, pages 143–151. IEEE, 1995.

    Google Scholar 

  20. Detlev Stalling, Malte Zöckler, O. Sander, and Hans-Christian Hege. Weighted Labels for 3D Image Segmentation. Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1998. Technical Report SC 98–39.

    Google Scholar 

  21. Chris Weigle and David C. Banks. Complex-valued contour meshing. In Proceedings of IEEE Visualization 1996, pages 173–180. IEEE, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banks, D.C., Stockmeyer, P.K. (2009). DeBruijn Counting for Visualization Algorithms. In: Möller, T., Hamann, B., Russell, R.D. (eds) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106657_4

Download citation

Publish with us

Policies and ethics