

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Mouratidis, Haralambos., Giorgini, Paolo, Manson, Gordon.
Article Title: An Ontology for Modelling Security: The Tropos Approach
Year of publication: 2003
Citation: Mouratidis, H., Giorgini, P., Manson, G. (2003) ‘An Ontology for Modelling
Security: The Tropos Approach’ In: Palade, V., Howlett, R. J., Jain, V. (eds), (2003)
Knowledge-Based Intelligent Information and Engineering Systems, Lecture Notes in
Artificial Intelligence 2773, Springer-Verlag pp 1387-1394
Link to published version: http://dx.doi.org/10.1007/b12002
DOI: 10.1007/b12002
ISBN: 978-3-540-40803-1
ISSN: 0302-9743 (Print) 1611-3349 (Online)

Information on how to cite items within roar@uel:
http://www.uel.ac.uk/roar/openaccess.htm#Citing

http://roar.uel.ac.uk/
http://dx.doi.org/10.1007/b12002
http://www.uel.ac.uk/roar/openaccess.htm#Citing

An Ontology for Modelling Security: The Tropos
Approach

Haralambos Mouratidis1, Paolo Giorgini2, Gordon Manson1

1University of Sheffield, Computer Science Department, UK
{haris, g.manson}@dcs.shef.ac.uk

2University of Trento, Department of Information and Communication
Technology, Italy

paolo.Giorgini@dit.unit.it

Abstract. It has been argued that security concerns should inform all
the stages of the development process of an agent-based system.
However, this is not the case since current agent-oriented
methodologies do not, usually, consider security concepts within their
modelling ontology. In this paper we present extensions to the Tropos
ontology to enable it to model security.

1. INTRODUCTION

Following the wide recognition of multi-agent systems, agent-oriented software
engineering has been introduced as a major field of research. Many agent-oriented
software engineering methodologies have been proposed [1,2] each one of those
offering different approaches in modelling multi-agent systems.

It has been argued [3] that security issues should inform all the stages of the
development of agent-based systems. However, usually, this is not the case. One of
the reasons is the lack of concepts and notations employed by the current
methodologies to help towards the inclusion of security within the development
stages. In other words, agent oriented software engineering methodologies do not,
usually, integrate security concepts within their ontology.

In this paper we describe how the Tropos ontology has been extended to consider
security issues. Section 2 of the paper provides an overview of Tropos ontology, and
Section 3 identifies the need to extend the methodology to consider security issues.
Section 4 describes the newly introduced (security) concepts and Section 5 concludes
the paper and presents directions for future work.

2. TROPOS

Tropos [2] is an information system development methodology, tailored to
describe both the organisational environment of a system and the system itself,

mailto:g.manson}@dcs.shef.ac.uk
mailto:paolo.Giorgini@dit.unit.it

employing the same concepts throughout the development stages. Tropos ontology is
described at three levels of granularity [4] and is inspired by social and organisational
structures. At the first level (lowest), Tropos ontology adopts components from the i*
modelling framework [5], which is based on the concepts of actors, goals, soft goals,
tasks, resources, and social dependencies. Social dependencies represent obligations
or agreements, called dependum, between two different actors called depender and
dependee. To partially illustrate the modelling of the social dependencies between
actors consider the eSAP System [6]. Such a system, involves four actors [6], namely
Older Person, R&D Agency, Benefits Agency, Department of Health (DoH), and
Professional (Figure 1).

The depender is the depending actor and the dependee is the actor who is depended
upon. For example in Figure 1, the Older Person depends on the Professional to fulfil
the Receive Appropriate Care goal dependency. For this dependency, the Older
Person is the depender, the Professional the dependee and the Receive Appropriate
Care goal the dependum. Actors have strategic goals and intentions within the system
or the organisation and represent (social) agents (organisational, human or software),
roles or positions (represent a set of roles). A goal represents the strategic interests of
an actor. In Tropos we differentiate between hard (only goals hereafter) and soft
goals. The latter having no clear definition or criteria for deciding whether they are
satisfied or not. A task represents a way of doing something. Thus, for example a task
can be executed in order to satisfy a goal. A resource represents a physical or an
informational entity while a dependency between two actors indicates that one actor
depends on another to accomplish a goal, execute a task, or deliver a resource.

At the second level, Tropos ontology provides a set of organisational styles
inspired by organisation theory and strategic alliances [4]. These styles are used to
describe the overall architecture of the organisational context of the system or its
architecture. The last element of the Tropos ontology consists of social patterns [4].
These patterns, unlike organisational styles, are focused on the social structure
necessary to achieve a particular goal instead of the overall goals of the organisation.

Fig. 1. The social Dependencies between the stakeholders of the eSAP system.

In addition to the graphical representation, Tropos provides a formal specification

language called Formal Tropos [7]. Formal Tropos compliments i* by defining a
textual notation for i* models and allow us to describe dynamic constraints among the
different elements of the specification in a first order linear-time temporal logic [7].

3. (LACK OF) SECURITY ONTOLOGY IN TROPOS

As we have been argued in a previous paper [3], the Tropos methodology needs to
be extended in order to adequately model security. The current Tropos ontology
provides developers the ability to model security requirements as soft goals. The
concept of a soft goal is “used to model quality attributes for which there are no a
priori, clear criteria for satisfaction, but are judged by actors as being sufficiently
met” [5]. However, security requirements may relate to system’s quality properties, or
alternatively may define constraints on the system [8]. Qualities are properties or
characteristics of the system that its stakeholders care about, while constraints are
restrictions, rules or conditions imposed to the system and unlike qualities are
(theoretically) non negotiable. Thus, although the concept of a soft goal captures
qualities, it fails to adequately capture constraints [3]. Security constraints might
affect the analysis and design of the system, by restricting some alternative design
solutions, conflict with some of the requirements of the system, and also by refining
some of the goals of the system or introducing new ones that help the system towards
the satisfaction of the constraint.

We believe the current Tropos ontology must be extended towards three main
directions. Firstly, the concept of a security constraint must be introduced, as a
separate concept, next to the existing concepts of Tropos. Secondly, existing concepts
such as goals, tasks, resources, must be defined with and without security in mind. For
example a goal should be differentiated from a secure goal, the latter representing a
goal that affects the security of the system. Thirdly, security-engineering concepts
such as security features, protection objectives, security mechanisms and threats,
which are widely used in security engineering, must be introduced in the Tropos
ontology, in order to make the methodology applicable by software engineers as well
as security engineers. In this paper, due to lack of space, we only present the
extensions towards the first two directions. Readers interested in how security-
engineering concepts are integrated within Tropos methodology should refer to [3].

4. SECURITY CONCEPTS

Security Constraints

We define security constraint as a constraint that is related to the security of the
system. Since constraints can influence the security of the system either positively
(e.g., Allow Access Only to Personal Record) or negatively (e.g., Send Record Plain
Text, not encrypted), we further define positive and negative security constraints,
respectively.

In the early requirements analysis security constraints are identified and analysed
according to the constraint analysis processes we have proposed in [9]. Security
constraints are then imposed to different parts of the system, and possible conflicts
between security and other (functional and non functional) requirements of the system
are identified and solved. To identify these conflicts we differentiate between security
constraints that contribute positively or negatively to the other requirements of the
system. We consider a security constraint contributing to a higher level of abstraction.

This means we are not taking into consideration specific security protocols that
should be decided during the implementation of the system, and that most of the times
restrict the design with the use of a particular implementation language.

Secure Entities

The term secure entities involves any secure goals, tasks and resources of the system.
A secure entity is introduced to the actor (or the system) in order to help in the
achievement of a security constraint. For example, if a health professional actor has
the security constraint Share Info Only If Consent Obtained, the secure goal Obtain
Patient Consent can be introduced to this actor in order to help in the achievement of
the constraint.

A secure goal does not particularly define how the security constraint can be
achieved, since (as in the definition of goal, see [5]) alternatives can be considered.
However, this is possible through a secure task, since a task specifies a way of doing
something [5]. Thus, a secure task represents a particular way for satisfying a secure
goal. For example, for the secure goal Check Authorisation, we might have secure
tasks such as Check Password or Check Digital Signatures.

A resource that is related to a secure entity or a security constraint is considered a
secure resource. For example, an actor depends on another actor to receive some
information and this dependency is restricted by a constraint Only Encrypted Info.

 Secure Dependencies

A secure dependency introduces security constraint(s), proposed either by the
depender or the dependee in order to successfully satisfy the dependency. For
example a Doctor (depender) depends on a Patient (dependee) to obtain Health
Information (dependum). However, the Patient imposes a security constraint to the
Doctor to share health information only if consent is achieved. Both the depender and
the dependee must agree in this constraint for the secure dependency to be valid. That
means, in the depender side, the depender expects from the dependee to satisfy the
security constraints while in the dependee side, a secure dependency means that the
dependee will make an effort to deliver the dependum by satisfying the security
constraint(s). There are two degrees of security: Open Secure dependency (normal
dependency) and Secure dependency. In an Open Secure Dependency [3] some
security conditions might be introduced but if the dependee fail to satisfy them, the
consequences will not be serious. This means that the security of the system will not
be in danger if some of these conditions are not satisfied. On the other side, there are
three different types of a secure dependency [3], Dependee Secure Dependency,
Depender Secure Dependency, and Double Secure Dependency.

Taking as an example the eSAP system illustrated in Section 2, the social
dependencies between the actors of the system can be modelled now taking into
account the security constraints between them as shown in figure 3. The Older Person
depends on the Benefits Agency to Receive Financial Support. However, the Older
Person worries about the privacy of their finances so they impose a constraint to the
Benefits Agency actor, to keep their financial information private. The Professional
depends on the Older Person to Obtain Information, however one of the most
important and delicate matters for a patient (in our case the older person) is the

privacy of their personal medical information, and the sharing of it. Thus most of the
times the Professional is imposed a constraint to share this information if and only if
consent is achieved. In addition, one of the main goals of the R&D Agency is to
Obtain Clinical Information in order to perform tests and research. To get this
information the R&D Agency depends on the Professional. However, the Professional
is imposed a constraint (by the Department of Health) to Keep Patient Anonymity.

Fig. 3. Social dependencies between the eSAP stakeholders

The security constraints imposed at each actor can be further analysed by

identifying which goals of the actor they restrict [9]. For example, the Professional
actor has been imposed two security constraints (Share Info Only If Consent Obtained
and Keep Patient Anonymity). During the means-end analysis [1] of the Professional
actor we have identified the Share Medical Info goal. However, this goal is restricted
by the Share Info Only If Consent Obtained constraint imposed to the Professional by
the Older Person. For the Professional to satisfy the constraint, a secure goal can be
introduced such as Obtain Older Person Consent. However this goal can be achieved
with many different ways, for example a Professional can obtain the consent
personally or can ask a nurse to obtain the consent on their behalf. Thus a sub-
constraint can be introduced, Only Obtain Consent Personally. This sub constraint
introduces another secure goal Personally Obtain Consent. This goal can be divided
into two sub-tasks Obtain Consent by Mail or Obtain Consent by Phone.

Formal Tropos

Formal Tropos [7] complements graphical Tropos by extending the Tropos graphical
language into a formal specification language [7]. The language offers all the
primitive concepts of graphical Tropos, supplemented with a rich temporal
specification language, inspired by KAOS [10], that has formal semantics and it is
amenable to formal analysis. In addition, Formal Tropos offers a textual notation for
i* models and allows the description of different elements of the specification in a

first order linear-time temporal logic. A specification of formal Tropos consists of a
sequence of declarations of entities, actors, and dependencies [7].

Formal Tropos can be used to perform a formal analysis of the system and also
verify the model of the system by employing formal verification techniques such as
model checking to allow for an automatic verification of the system properties [7].

As with the graphical Tropos, Formal Tropos has not been conceived with security
on mind. Thus, Formal Tropos fails to adequately model some security aspects (such
as secure dependencies and security constraints). Extending Formal Tropos will allow
us to perform a formal analysis of our introduced concepts and thus provide
formalism to our approach. Towards this direction, we have extended Formal Tropos
grammar [9] and below we present an example in which the secure dependency
Obtain OP information between the Older Person and the Professional (Figure 3) is
specified

Entity HealthInformation
 Attribute constant Record: Record

Entity Record
Attribute constant

content: CarePlan ,accessControl: Boolean
 patient: Patient, consent: boolean
Security Constraint
 ∃hi:HealthInformation ((hi.record=self) → self.accessControl)

Actor Professional
 Attribute patients: PatientList

Goal provideCare
Creation condition

∃ p: Patient (In(p,self.patients) ∧ ¬p.helthOK)

Actor Older Person
Attribute healthOK: boolean
Goal MaintainGoodHealth

 Creation condition ¬self.healthOK
Security constraint

 ∀ rec: Record ((rec.patient=self) → rec.accessControl)

Dependency ObtainOPInformation
 Type Goal
 Security Type Dependee
 Mode Achieve and Maintain
 Depender Professional
 Dependee Older Person
 Attribute constant
 Creation condition

In(self.dependee,self.depender.patients) ∧self.dependee.healthOK
Security Constraint for depender

∀ rec: Record ((rec.patient=dependee) ∧ rec.consent)

5 Conclusions and future work

In this paper we have presented extensions to the Tropos ontology to enable it to
model security issues. Concepts and notations were introduced to the existing
graphical Tropos and also Formal Tropos grammar was extended to provide
formalism for our newly introduced concepts.

During the process of extending the Tropos ontology we have reach some useful
conclusions. By introducing the concepts of security constraints, functional, non-
functional and security requirements are defined together, however a clear distinction
is provided. In addition, by considering the overall software development process it is
easy to identify security requirements at the early requirements stage and propagate
them until the implementation stage. This introduces a security-oriented paradigm to
the software engineering process. Also the iterative nature of the methodology along
with the security concepts allows the redefinition of security requirements in different
levels therefore providing a better integration of security and system functionality.

Our extensions only apply to the first level of the Tropos ontology. Future work
involves the expansion of our approach to the other two levels of the Tropos ontology.
We aim to provide a set of organisational styles and a pattern language that will help
developers to consider security throughout the development of an agent-based system.

References

1. C. Iglesias, M. Garijo, J. Gonzales, “A survey of agent-oriented methodologies”, Intelligent
Agents IV, A. S. Rao, J. P. Muller, M. P. Singh (eds), Lecture Notes in Computer Science,
Springer-Verlag, 1999

2. J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-Driven Development Methodology,” In
Proc. of the 13th Int. Conf. On Advanced Information Systems Engineering (CAiSE’01),
Interlaken, Switzerland, June 2001

3. H. Mouratidis, P. Giogini, G. Manson, “Modelling Secure Multiagent Systems”, (to appear) in
the Proceedings of the 2nd International Joint Conference on Autonomous Agents and
Multiagent Systems, July 2003

4. A. Fuxman, P. Giorgini, M. Kolp, J. Mylopoulos, “Information Systems as Social
Structures”, In Proceedings of the Second International Conference on Formal Ontologies for
Information Systems (FOIS-2001), Ogunquit, USA, October 17-19, 2001

5. E. Yu, “Modelling Strategic Relationships for Process Reengineering”, PhD thesis, Department
of Computer Science, University of Toronto, Canada 1995

6. H. Mouratidis, I. Philp, G. Manson, “Analysis and Design of eSAP: An Integrated Health and
Social Care Information System”, In the Proceedings of the 7th International Symposium on
Health Information Management Research (ISHIMR2002), Sheffield, July 2002

7. A. Fuxman, M. Pistore, J. Mylopoulos, P. Traverso, “Model Checking Early Requirements
Specification in Tropos”, In the Proceedings of the 5th Int. Symposium on Requirements
Engineering, RE’ 01, Toronto, Canada, 2001

8. I. Sommerville, “Software Engineering”, sixth edition, Addison-Wesley, 2001
9. H. Mouratidis, “Extending Tropos Methodology to Accommodate Security”. Progress Report,

Computer Science Department, University of Sheffield, October 2002
10. A. Dardenne, A. Van Lamsweerde, S. Fickas, “Goal-directed Requirements Acquisition”,

Science of Computer Programming, 20, pp 3-50, 1993

	LNAI 03 citation info
	omasd03
	Security Constraints
	Secure Entities
	Secure Dependencies
	Formal Tropos

