roar e

research open access repository

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Falcarin, Paolo; Alonso, Gustavo.

Article title: Software Tampering Detection using AOP and mobile code

Year of publication: 2004

Citation: Falcarin, P., Alonso, G. (2004) “Software Architecture Evolution through
Dynamic AOP” In: Oquendo, F. et al. (Eds) European Workshop on Software
Architectures (EWSA), Saint-Andrews (UK), May 21-22, 2004 Proceedings. LNCS
3047, Heidelberg: Springer-Verlag. pp 57-73.

Link to published version: http://dx.doi.org/10.1007/b97879

DOI: 10.1007/b97879



http://roar.uel.ac.uk/
http://dx.doi.org/10.1007/b97879

Software Architecture Evolution through
Dynamic AOP

Paolo Falcarin! and Gustavo Alonso?

! Dipartimento di Automatica e Informatica, Politecnico di Torino,
1-10129 Torino, Italy
Paolo.Falcarin@polito.it
2 Department of Computer Science, Swiss Federal Institute of Technology (ETHZ)
CH-8092 Zurich, Switzerland
Alonso@inf.ethz.ch

Abstract. Modern computing and network environments demand a high
degree of adaptability from applications. At run time, an application
may have to face many changes: in configuration, in protocols used, in
terms of the available resources, etc. Many such changes can only be
adequately addressed through dynamic evolution of the software archi-
tecture of the application. In this paper, we propose a novel approach to
dynamically evolve a software architecture based on run-time aspect ori-
ented programming. In our framework, a system designer/administrator
can control the architecture of an application by dynamically inserting
and removing code extensions. It is even possible to replace a significant
part of the underlying middleware infrastructure without stopping the
application. The novelty of this work is that it allows for a much more
flexible development strategy as it delegates issues like middleware choice
and adherence to an architectural specification to a framework enhanced
by dynamic code extensions.

1 Introduction

Software architectures for distributed systems are a challenge in terms of software
development and evolution. Design choices like, e.g., the kind of architecture, and
the underlying middleware among the components are often made in an early
design phase, and are therefore difficult and expensive to alter or rollback. To
minimize the impact and cost of such design changes, the notion of software vari-
ability has been introduced [1]. Software variability implies a series of locations
in the software where behavior and structure can be configured as well as the
ability to change, customize or configure different aspects of the system. More-
over, to keep the evolution under control, variability requires a model-driven
and architecture-centric approach that constraints changes and avoids undesired
divergences as the specification evolves. In this paper we explore the issue of
variability in the area of distributed systems. In particular, we are interested in
the interplay between middleware platforms and component models, and how
this aspect can be treated as a configurable option, preferably at run time. Our



II

goal is to address some of the challenges encountered when using some of the pre-
dominant component platforms [2]: CORBA/CCM [3], J2EE/EJB [4], or Web
Services [5]. For instance, in the context of these platforms, it has been argued
in favor of agile development processes [6].

Agile methods suggest a continuous process whereby working software is con-
stantly being produced as the development progresses toward the final objec-
tives. Yet, in many applications, particularly in the area of distributed systems,
having a working prototype already implies that several crucial design decisions
have been made: for example, the component model to use and, by association,
the underlying middleware infrastructure. Such early design decisions limit the
scope of agility because they may become too costly to revisit or readjust at a
later point in time. To address these issues, we propose a mechanism to imple-
ment and specify variability at both development and run time. At development
time, the idea is to support delaying architectural decisions, such as the type of
middleware platform to be used, with minimal impact on reconfiguration and
modifications. At run time, the former idea is extended to insert/withdraw con-
nectors and components in the deployed architecture, without interrupting the
application.

The framework we propose combines ideas from dynamic Aspect-Oriented Pro-
gramming (AOP) [7] and dynamic software architectures [8]. Its contribution is
to provide a mechanism whereby middleware infrastructure, components, and
overall system architecture are treated as software variants that can be easily
changed during prototyping or even at run time. Thus, the framework provides
the necessary flexibility to adapt to continuous changes either for rapid prototyp-
ing purposes or as a result of changes in the computing or network environment.
The paper is organized as follows: first of all we introduce the motivation of our
work, then we describe our framework in detail, and finally we show a case study
and discuss related work.

2 DMotivation and requirements

In this section we discuss the motivation behind the proposed framework and
previous work the framework builds upon.

2.1 Middleware and flexible development

The early life cycle stages of specification and design are of crucial importance in
a distributed system. Typically, it is at these stages that the middleware platform
is chosen. Because the middleware platform tends to have such a profound effect
on the architecture and properties of the resulting system, decisions related to
the underlying middleware are particularly significant. For example, if language
independence (or heterogeneity) is a requirement, then CORBA is a natural
choice for middleware. However, once CORBA is selected, then the interfaces
between components must be specified through the CORBA IDL, middleware
services are component managed, and access to middleware services is through



IIT

a particular programming model whereby the services used are determined at
compile time. In contrast, a Java-based system may choose to use Enterprise
Java Beans. In this case the middleware services are (by default) container-
managed, and access to the services is by a different programming model. The
decisions about which services are used and how they are used are made not at
compile time but at deployment time. These differences are significant enough
to constraint the degree of freedom in the overall design and, in most realistic
applications, are very costly to change once development has started. Ideally,
services and even the middleware platform itself should be parameters of the
system that can be changed, as need dictates. The objective would be to use
a declarative specification of all design decisions that are to become variants
(to simplify development and separate concerns) but making these decisions
explicit by formalizing them in an architectural specification file, and by building
a framework that implements it in the current architecture of the system.

2.2 Software architecture evolution

Software connectors provide a uniform interface abstraction of communication
to other connectors and components of the architecture: thus, designers need
not to be concerned with the properties of different middleware technologies, if
the technology can be encapsulated within a software connector. Moreover, the
advantages of combining multiple middleware technologies, to be used in different
parts of a distributed architecture, are even more evident with separation of
connector code from component code.

This separation, beyond leading to an easier development, is then a necessary
condition to support dynamic evolution of software architectures, i.e. runtime
reconfiguration and/or replacement of components and connectors in a running
system. We need a specification language that allows to easily define and modify
architectural elements, and to be executed by a framework supporting dynamic
evolution.

At the implementation level, to support dynamic evolution, the programming
style changes: the programmer writes application code that must be independent
from middleware-specific mechanisms and thus treating each remote method call
as a normal local call; moreover design decisions about technologies used by an
architecture are automatically reflected in the running system by means of a
framework and must not worry anymore application developer. Following these
ideas, our framework will rely on an architectural specification defined with
xADL (XML-based Architecture Description Language) [9]; there are several
ADLs focused on dynamic software architectures, but we have chosen xADL
because: it is designed to be a standard way to express architectural specification;
it is extensible and adaptable allowing architects to define new XML-Schemas
for extensions that can be referenced in a xADL file; moreover, it is based on
XML and it is easier to be automatically parsed than other ADLs. The latter
feature is a key point to enable a real mapping between code and its architectural
specification, even if they both evolve in time.



v

2.3 Dynamic adaptation

Once certain design decisions can be postponed and have been made explicit
through a document that the system uses to configure the application, it is
possible to take the idea one step further. Rather than making architectural
decisions at development or deployment time, they can be made also at run
time. For example, it should be possible to dynamically change the middleware
platform used at run-time with a new version of the same platform or an even
different platform altogether. We will later demonstrate how this can be done
by using the proposed framework to change a distributed application running
on CORBA to a Web Service based implementation. The change can take place
without stopping any system component, and they are done under the control of
a specification decided by the system architect and propagated through a cen-
tralized configuration application.

This is a key issue if components are deployed on remote terminals, where manual
reconfiguration is not feasible, and it is very important to maintain application
integrity and coherence with the evolving specification. The use of a specifica-
tion and basing all changes on the specification document allows for all necessary
checks to be performed at run-time. Such checks are part of the functionality
of our framework, which attaches an instance of the framework to each compo-
nent to make sure the checks are performed. In addition, our framework can be
coupled with a dynamic Aspect-Oriented Programming platform (the PROSE
system, discussed later on in the paper) for added flexibility. Using dynamic AOP
gives us the possibility to remotely insert middleware code and model-checking
features of the framework in advice code. This advice code is then directly tied to
the component rather than executed separately, thereby allowing us to dynami-
cally insert and withdraw these aspects at run-time as the specification changes.
Thanks to PROSE the dynamic adaptation can be efficient and do not halt nor-
mal operations, and changes can be propagated to all distributed components
in a reliable and transactional manner.

3 JADDA framework

In this section we discuss the implementation of our framework: JADDA, Java
Adaptive component for Dynamic Distributed Architectures. JADDA has two
parts: a Java library used to check architectural specification and to handle
middleware concerns, and a System Administrator Console (SAC) used to prop-
agate the xADL architectural specification to all the distributed components
using JADDA. SAC is an independent application that is used to send xADL
specification files to all involved remote servers of distributed systems, while the
JADDA library has to be included in all components of the distributed archi-
tecture.

In the following subsections we describe different features of JADDA implemen-
tation. First of all we describe its inner architecture and API, then we detail
xADL standard extensions created to configure middleware (like CORBA and
SOAP); moreover we describe extensions mechanism based on a dynamic AOP



e

platform, and JADDA behavior during run-time reconfiguration due to evolution
of architectural specification.

3.1 JADDA architecture

JADDA library that must be included in each component of the distributed
architecture has an inner structure depicted with the UML class diagram of
Figure 1.

Application

JADDA ! Thread

DistributedConnector

Listener

CorbaConnector SoapConnector

Fig.1. JADDA UML class diagram

Each application must include an instance of JADDA class; during its con-
struction and initialization, a Listener instance is created in a separate thread.
The Listener has the complex task to listen on the network for incoming xADL
specification file and to handle dynamic reconfiguration. Moreover JADDA may
include different instances of DistributedConnector abstract class: this defines
a common API for middleware: in fact different reifications of this class (like
CorbaConnector and SoapConnector) can be added to implement behavior of
different middleware standards. During initialization the JADDA instance, run-
ning in each component, registers itself in the JADDA System Administrator
Console in order to receive the current xADL architectural specification file;
then all the needed remote interface references are taken by the CORBA Name
server or by the UDDI [10] registry depending on the information contained in
the xADL file. Application independence from the middleware used is due to the
fact that JADDA wraps on different middleware protocols for remote method
invocation, offering to application a simple API, whose typical usage is depicted
in Figure 2.



VI

Jadda jadda = new Jadda();

Service s =newService("Server","ChatManager");
String methodName="accessRoom";

String parameter = "Joe";

jadda.call(s, methodName, parameter);

Fig. 2. Remote invocation with JADDA API

Client Jadda CorbaConnector

1. cali{ Service, method, params)

2. resoive( service.interfaceName)

Fad
[Object ref]
<
3. execute( ref, method, params)
=
{ Objecto |
<

{ Objecto ]

Fig. 3. Sequence diagram of method ’call’

The method ”call” is overloaded in order to offer different versions able to
call methods with different numbers of parameters; in the different 'call’ method
signatures, after the first three strings identifying the requested method, the re-
maining parameters are all Java ’Object’ types: they all refer to the main ’call’
method implementation with a third parameter made by an array of Object
classes. We introduce the Service class to represent a generic remote reference to
a service; looking at the previous code the creation of a Service object with the
depicted parameters, creates a generic reference to the interface ” ChatManager”
of the component ”Server”. These values have to be present in the specification
file, because the method ’call’ searches in the current xADL file all the informa-



VII

tion about the middleware needed to communicate with the requested interface
method and it uses Java reflection to execute the remote method invocation, as
depicted in figure 2, supposing the case of a CORBA call.

The method ”resolve” on the underlying connector implementation is invoked
to resolve and cache the remote reference for subsequent calls. The method ”exe-
cute” realizes the real remote invocation using Java reflection to use middleware-
related classes, depending on the used DistributedConnector’s subclass (in this
case CorbaConnector) and on related data defined in the xADL file. This ap-
proach gives a unique and abstract view of different middleware standards. This
implementation strategy reduces significant problems in the development and
maintenance of software systems and connector code is no more mixed with
component code; thus service code is more portable and independent by middle-
ware chosen in the beginning of design and service code can be easily reused or
upgraded in future versions.

3.2 xADL extensions for distributed systems

JADDA provides a uniform interface on different software connectors: in this
way system designers need not to be concerned with properties of different mid-
dleware technologies. The basic schema of xADL is reused to define the architec-
ture’s topology but new XML-schemas have been created to specify information
related with distributed systems.

| nameSoresiPrapetties [ e [

Fig. 4. CorbaConnector XML schema



VIII

For example the communication type defined in a xADL’s Connector schema
has been extended with a new schema called Distributed-Connector. This is only
a basic schema that is specialized by other XML-schemas related to middleware
protocol standards, like CorbaConnector for CORBA-IIOP, and SoapConnec-
tor for SOAP. A standard protocol like CORBA-ITOP can be implemented by
different middleware platforms, offering slightly different APIs to applications.
Therefore, including in the same architecture different kinds of CORBA imple-
mentations, means having different instances of CORBA-connectors in a xADL
file: each CORBA connector instance will define values of tags, defined in the
CORBA-connector schema, to qualify its own specializations, as sketched in fig-
ure 4.

For example, the CORBA schema defines tags like: ”NameServer” that in-
cludes all the needed information for binding and retrieving CORBA object
references published on a CORBA Naming Service; the tag ” Location” gives the
runtime information to connect to Naming Service (e.g. hostname and port). The
kind of middleware used by a component’s interface is defined in the extended-
Interface XML-schema: this one extends the xADL’s Interface schema and it
contains the reference to the connector instance used by a component’s interface;
other XML-schemas like DistributedLink, and SoapConnector are not detailed
for brevity.

3.3 JADDA reconfiguration

Once described JADDA behavior while the system is running, in this subsec-
tion we describe how architecture reconfiguration works. First of all the Listener
thread included in JADDA registers its presence to the SAC, sending the IP
address and port where it is waiting for a new specification file. Then SAC
sends this file to all components of the distributed architecture, i.e. to all their
registered JADDA instances. When the file is received the Listener thread has
to follow a particular behavior, as depicted in state-chart of figure 5, passing
from INIT state to REQUEST state. This Listener’s state means that a new
specification file has been received and that is waiting the right moment to recon-
figure JADDA. In this case it checks if the main application thread containing
JADDA instance is IDLE (i.e. no calls are currently in execution) or FREEZE
(i.e. JADDA has terminated a remote call and it has found that Listener’s state
is REQUEST): if the previous conditions hold then Listener can update internal
tables of JADDA in a synchronized manner, passing to the state UPDATING.
Once finished it comes back to IDLE state, waiting for a new specification file
from the network.

To understand the whole behavior we also have to describe the JADDA state-
chart, depicted in figure 6. In the beginning and the end of each remote call,
JADDA checks Listener’s state. If Listener is IDLE then JADDA can execute
different remote calls, passing to CALLING state and using the variable 'apps’
to count the number of parallel invocations currently in execution: this is due to
the fact that the main application can be multi-threaded and different parallel
invocations to JADDA are possible. If Listener is in REQUEST state, JADDA



START

new Listener()

new xADL
INIT

IX

new xADL

Jadda = FREEZE or

N REQUEST

IDLE

End update()

UPDATING ]

ALL STATES

error
7‘[[ ERROR

Fig. 5. Listener state-chart

Listener = REQUEST

START
new Jadda()
INIT

Listener = REQUEST
and apps =0

End call / apps--

Listener = IDLE and apps =0
\r

> FREEZE

Listener
=IDLE

Listener =
REQUEST

"

CALLING [,
o call / apps++
call / apps++

error

ALL STATES

» ERROR

Fig. 6. JADDA state-chart

has to complete all the current remote calls (eventually suspending new incom-
ing ones): when apps counter reaches zero then JADDA can move to FREEZE
state, leaving the full control of its data to the Listener thread, that can start
the reconfiguration of JADDA’s internal data. The IDLE state can always be
reached because of timeouts support of middleware implementations: when a re-



X

mote call is blocked the timeout triggers an exception that is caught by JADDA,
which forces the IDLE state.

3.4 JADDA extension for dynamic AOP

Dynamic AOP is used to extend the features of an application at run time. Dy-
namic creation of aspects by the system designer can lead to unexpected software
evolution: in our case, the scope of extensions is constrained to middleware code,
i.e., future modifications of the connector implementation and configuration that
were not considered in the early phases of the design. The aspects remote trans-
mission in a transactional way allows all the components of the architecture to
dynamically upload new classes. The necessary condition to obtain these results
is running JADDA enabled with dynamic AOP features; moreover, when dy-
namic AOP is set, application developer can further run JADDA in two distinct
AOP-modes: in the first one, developers can handle each remote method invoca-
tion in the code, writing local methods having the same signature as the needed
methods on remote interfaces. These local methods, initially with an empty body,
will be completed by the JADDA architectural framework, using the code of as-
pects and classes inserted at run-time by the dynamic aspect-oriented platform
PROSE [11], which wraps on a standard JVM, enhancing it with dynamic AOP
features.

In the second AOP-mode, developer can use JADDA as usual with its API that
wraps on different connectors, but the implementation of available connectors
can be updated using dynamic AOP features. PROSE is a dynamic AOP plat-
form to be able to insert and withdraw aspects at runtime, and in our case it is
used to totally decouple the application code from middleware and architectural
concerns. Using this tool, the adaptability of JADDA is improved allowing the
dynamic downloading of new connectors and related middleware components
(and related classes, like interface stubs), when a new version or a different ven-
dor’s implementation is available for a particular middleware protocol.

In both JADDA AOP-modes aspect code is transmitted by the System Admin-
istrator Console (SAC), relying on an application of PROSE that allows remote
transmission of aspects bytecode in a transactional way. In the first JADDA
AOP-mode, the aspect code is built by SAC using a temporary Java file, called
Aspect Template (see figure 7): it contains generic and incomplete Java code
of an aspect for the PROSE platform. Depending on the values of the xADL
specification file, then the SAC completes the aspect template in order to obtain
different Java files, one per each interfaces’ method of the whole architecture.
In In figure strings here depicted in bold font, like ” Aspect Template”, ” CLASS-
NAME”, and "METHODNAME” are special keywords that will be replaced by
SAC with the string values defined in the current xADL specification file.
Using the example of figure 2, "CLASSNAME” will be replaced by the Chat
client class name and method with the string ”accessRoom”. The composition
logic defined in the ”pointcutter” method, is interpreted by the PROSE plat-
form that will call the ”"METHOD_ARGS” method (i.e. the "advice”, in AOP
terminology) before each execution of method "METHODNAME” of the class



XI

public class AspectTemplate extends DefaultAspect
{
Jadda jadda=Jadda.instance;
public MethodCut crosscut = new MethodCut() {
public void METHOD_ARGS(CLASSNAME c,Service s,REST p){
try {
jadda.checkParameters(s, p);
jadda.call(s, "METHODNAME", p);
} catch (JaddaException ex) {
jadda.prose.exception=true;
}
} protected PointCutter pointCutter() {
return (Executions.before()).
AND (Within.type ("CLASSNAME")).
AND (Within.method("METHODNAME")) ;
Ty

Fig. 7. Aspect Template source code

"CLASSNAME”. The Aspect name is created by SAC composing the name of
the current xADL file, the class name and the method name: a new unique iden-
tifier is needed because JVM does not allow namespace conflicts, even if they
are due to unloaded classes.

These Java files are aspects code for the dynamic AOP platform and they are
compiled to bytecode. Finally, among the different compiled classes, SAC de-
duces, from the xADL specification, which are the methods invoked by each
component of the distributed architecture and it sends, after the new xADL
file, the new aspects to each JADDA instance. As an aspect class can refer to
new classes (e.g. middleware-related interface stubs), these are also sent to the
JADDA instance, through the remote transfer mechanisms offered by the dy-
namic AOP platform. In the second AOP-mode, SAC sends new connector im-
plementations, depending on the current xADL specification. On the other side,
when the Listener thread in the JADDA instance received a new file, it with-
draws the current aspects and inserts the new ones, when they are all arrived.
Then the previous state-charts are still valid in order to maintain consistency
during reconfiguration, even with aspect code insertions/withdrawals.

4 Case study

We have applied JADDA to a basic example of chat system whose architecture
is sketched in figure 8. A chat server publishes its own interfaces ChatManager
and ChatRoom on a CORBA Naming Service; the System Administrator Con-
sole (SAC) is running and listening for requests on a specified port. Two chat
clients using JADDA independently bootstrap and their own JADDA instance
register their presences to the SAC and send data (e.g., the port where they



XII

are listening for xADL file transmission). The second step is represented by
the transmission of the common xADL file, containing the current architectural
specification, to all the involved components, i.e. the chat clients. After that,
the third step is composed by the creation of aspects code in the SAC and then
the consequent transmission to the clients using the remote aspect transmission
feature of PROSE. Moreover, not only aspects can be added to a running appli-
cation but also other additional classes, like middleware stubs, needed to activate
the distributed connector used by the clients (e.g. using a CORBA connector
like in figure 8).

System
Admunistrator
Console
1. Registration

(Host1:Port1) 1.b Registration:

2. send xADL1 (Host2:Port2)

3. send Aspects
JADDA
Client1

JADDA
clent2

4.b Resolve Name

4.a Resolve Name

5.a Method ca“\

—> SOCKET
— — > CORBAI/IOP

e —
CORBA Server

Fig. 8. Set-up scenario

Once the aspects are all arrived to a chat client, its own JADDA instance
activates them and the application code starts its normal execution, resolving
remote object references on the CORBA name server whom location is specified
in the xADL file, and starting to call remote methods on the CORBA chat
server. Let’s now suppose that system architect wants to evolve the system in
order to use a new middleware like SOAP and the deployed components (the
chat clients) would be notified that there is a new instance of the chat server
exposing WSDL interfaces on another location. System architect just needs to
prepare the new xADL file with the needed information and build all the related
aspects and stub classes. Once finished we can upload the new specification and
the new aspects to each component currently connected using the remote aspect
transmission feature of PROSE, as depicted in the first two steps of figure 9.
After all the aspects have been inserted in a chat client, it will restart a normal
execution resolving remote service address through a query to the UDDI registry



XIII

System
Administrator
Console

1. Send xADL2
2. Send Aspects

JADDA

Client1 JADDA

Client2

‘(B.b Query service g
45 Sent WSDL —>

N\, upDI

N Registry ‘ 2
5.a Request . . e /5.b Request
. s
" - .
——> SOCKET

— +* —> SOAPMHTTP

Fig. 9. Switch scenario

(step 3) and then when a WSDL interface will be sent back (step 4) a normal
method call will be executed to the new deployed Chat Server. The important
result is the portability of the chat application that has neither to be rewritten
nor restarted while middleware is changed and components are swapped.

5 Related work

The discussion on related work touches different fields: dynamic software ar-
chitectures, middleware, and separation of concerns. Architecture description
languages (ADLs) and tools provide a formal basis for describing software ar-
chitectures by specifying the syntax and semantics for modeling components,
connectors, and configurations. Since a majority of existing ADLs, have focused
on design issues, their uses have been limited to static analysis and simulate sys-
tem execution at the architectural level. The other possibility, also used in our
approach, is reflecting architecture modifications in an executing system. Arch-
Java [12] follows this approach extending Java language with new constructs
and providing a compiler to build an application that adheres to its architec-
tural specification. Different kinds of connectors are implemented, usable with
an API that has some similarities with the one of JADDA, but there is no sup-
port for dynamic architectural changes. These issues are considered by tools like
Regis [13], and ArchStudio [8], both made to handle architecture-based runtime
software evolution. ArchStudio, like JADDA, relies on xADL architectural spec-
ification, and the run-time structure of the application is altered, generating a



X1V

different arrangement of components and connectors. These must be developed
using Java-C2 class framework [14], limiting developer’s freedom. While Arch-
Studio checks architectural properties on xADL specification, in our approach
model checking is implemented at runtime in JADDA instances of each com-
ponent. Neither ArchJava nor ArchStudio offer connectors relying on off-the-
shelf (OTS) implementations of widespread middleware protocols (like SUN’s
CORBA-IIOP and SOAP in JADDA framework), but they offer its own connec-
tor implementation of other protocols.

The key role of connectors in architecture-based software development has been
stated by software architecture community, and the issue of reusing OTS middle-
ware in connectors has been recently faced [15], but, in general, existing ADLs
support static description of a system, and provide no facilities for specifying
both runtime architectural changes and OTS middleware encapsulation. Al-
though a few ADLs, such as Darwin [16], C2 [14], Rapide [17], Wright [18] can
express runtime modification to architectures, these are specified during design
and included in the application, constraining evolution among a set of prede-
fined alternatives. JADDA follows another approach, based on unconstrained
dynamism, i.e. insertion of unexpected modifications of an architecture and in-
corporation of behavior not anticipated by the original developers: in this case
validity of changes must be ensured both before insertion, acting on architectural
model, and at runtime, preserving consistency [19]; in fact, some aspects of soft-
ware architecture evolution are the same of configuration management [20], and
therefore dynamic architectural changes can be seen a more generic approach
to dynamically reconfigure a software system at run time. Another approach
of dynamic reconfiguration is adding configuration elements to components. For
instance, Polylith [21] is a specification language for configuration, used to explic-
itly specify component bindings: in this case reconfiguration sequence consists of
two steps: waiting to reach a reconfiguration point; and blocking communication
channels (managing messages in transit) during reconfiguration. A third way is
delegating reconfiguration to containers [22]. JADDA dynamic reconfiguration
tries to take features of the first two approaches, adding a JADDA instance to
each component and governing the change with an architecture-centric approach.
Regarding middleware reconfiguration and adaptation, different approaches have
been proposed for mobile applications [23] and for context-aware applications
[24]. Among these ones, the architecture-centric approach was used to adapt
reflective middleware to new requirements [25], using the Aster framework in
supporting dynamic adaptation in the context of the Open-ORB middleware
platform to accommodate re-configurations due to changing non-functional pa-
rameters and environmental conditions. This work is more focused on defining
extensions of software architecture techniques to accommodate dynamic change,
in order to make the automatic synthesis of component-based configurations,
and their subsequent monitoring and adaptation, based entirely on architectural
descriptions. It is not clear how much the architectural model is bound to the
implementation as in our approach, that is also focused on the implementation of
a framework able to substitute at run-time an OTS middleware implementation



XV

(not constrained to a particular standard like CORBA) with a different one.
Moreover, several research has been done in quality-aware middleware systems
[26] and middleware adaptation to non-functional features. For instance, P. De-
vanbu [27] proposed a methodology to enhance CORBA components with non-
functional features (e.g. security), and the tool Lasagne [28] gives explicit support
for CORBA clients runtime-adaptation to fulfill non-functional requirements.
This tool relies on Aspect Components [29], a dynamic aspect-oriented platform
for distributed programming. It provides components that integrate system-wide
properties (crosscutting concerns) such as distribution and authentication within
a core application.

Separation of concerns is an emerging methodology to better modularize non-
functional features, decoupled from application code. State-of-the-art separation
of concerns techniques such as Aspect-oriented Programming [30], Hyperspaces
[31], Mixin Layers [32], and Adaptive Plug and Play Components [33] allow ex-
tension of a core application with a new aspect/subject/layer/collaboration, by
simultaneously refining state and behavior at multiple points in the application
in a non-invasive manner. Therefore we think that JADDA and dynamic AOP
are better suited for client-specific integration of extensions, while the above
techniques are better suited for providing separation of concerns at the compo-
nent implementation level. In composition filters approach [34], filters intercept
messages sent and received by components. Since they are defined in extensions
combined with a superimposition mechanism, they can be dynamically attached
to components, but the integration of an extension is scattered across multiple
object interactions, thus difficult to update consistently in one atomic action.
In JADDA, the composition logic is completely encapsulated within the com-
position rules contained in the aspect code (pointcuts) and the components’
methods involved are taken by the specification. By doing this, developers do
not need worry about architectural issues since these are automatically handled
by the framework. Moreover our work extends dynamic reconfiguration to dif-
ferent middleware protocols and it adds basic runtime model-checking features.

6 Conclusions and future work

This paper describes the architectural framework JADDA, a component used to
reach three main goals. The first one is easing timeline variability (changes that
can be applied at either development time or run time) of different middleware
implementations used.

The second goal is updating the connectors of a system by acting on its xADL
architectural specification. This is edited and propagated by the SAC. In this
way, re-configuration can be decided at a higher level than source code and all
the needed information are stored in the xADL file.

Finally, dynamic reconfiguration is also handled using dynamic Aspect-Oriented
Programming platform to allow additional classes transport in a reliable and
transactional manner.As these features could lead to a stronger modification of
application and to an unexpected software evolution, the verification of correct-



XVI

ness of a new architecture is currently implemented in JADDA to verify specified
links. While at boot-time JADDA allows realization of whichever x ADL architec-
tural model in the implementation, at run-time the current JADDA implemen-
tation is tailored for simple client-server architecture, where a client application
(using JADDA) interacts with only one server. For example multiple chat client
applications running on mobile terminals could use JADDA to dynamically mi-
grate their connections to a new server implementation. Current work focuses
on handling more complex architectures with related consistency issues, and ex-
tending JADDA for different middleware standards. Checking xADL correctness
before instantiation in the running system, and realization of different interaction
styles (e.g. event-based communications) will be part of future work.

7

Acknowledgements

The authors want to thank Andrei Popovici (ETH Zurich), and Patricia Lago
(Politecnico di Torino) for the precious advices given during the realization of
this work.

References

10.

11.
12.

van Gurp, J., Bosch, J., Svahnberg, M.: The notion of variability in software
product lines. Proceedings 2nd Working IEEE / IFIP Conference on Software
Architecture (WICSA) (2001)

Szyperski, C.: Component software: Beyond object-oriented programming. (1998)
OMG: CORBA (common object request broker architecture) specification.
(http://www.corba.org/)

EJB: Enterprise javabeans specification. (http://java.sun.com/products/ejb/docs.html)
Gudgin, M., et al.: http://www.w3.org/TR/soapl12-part2/. W3C Recommenda-
tion (2003)

Newkirk, J.: Introduction to agile processes and extreme programming. Proc. of
ICSE 2002 (2002)

Popovici, A., Alonso, G., Gross, T.: Just in time aspects: Efficient dynamic weaving
for java. Proc. of the 2nd International Conference on Aspect-Oriented Software
Development (2003)

Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software
evolution. Proc. of International Conference of Software Engineering (ICSE98)
(1998) 177-186

Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A highly-extensible, xml-based
architecture description language. Proc. of Working IEEE/IFIP Conference on
Software Architecture (WICSA 01) (2001) 103-112

UDDI: Universal  discovery and  description and  integration.
(http://www.uddi.org/)

PROSE: Programmable service extensions. (http://prose.ethz.ch/)

Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architecture
to implementation. Proc. of International Conference of Software Engineering
(ICSE 2002) (2002)



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

XVII

Magee, J., Dulay, N., Kramer, J.: Regis: a constructive development environment
for distributed programs. Distributed Systems Engineering Journal (1994) 304—-312
Special Issue on Configurable Distributed Systems.

Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N.: Using object-oriented
typing to support architectural design in the c2 style. Proceedings of the ACM
SIGSOFT ’96 Fourth Symposium on the Foundations of Software Engineering
(1996) 24-32

Dashofy, E.M., Medvidovic, N., Taylor, R.N.: Using off-the-shelf middleware to
implement connectors in distributed software architectures. Proc. of International
Conference of Software Engineering (ICSE 99) (1999) 3-12

Magee, J., Kramer, J.: Dynamic structure in software architectures. Fourth SIG-
SOFT Symposium on the Foundations of Software Engineering (1996)

Luckham, D.C., Vera, J.: An event-based architecture definition language. IEEE
Transactions on Software Engineering (1995)

Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transac-
tions on Software Engineering (1997)

Feiler, P.H., Li, J.: Consistency in dynamic reconfiguration. Proc. 4th International
Conference on Configurable Distributed Systems (ICCDS 98) (1998)

van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N.: Taming archi-
tectural evolution. Proc. of the Ninth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE-9) (2001)

Portilo, J.M.: The Polylith software bus. ACM Transactions on Programming
Languages and Systems (TOPLAS) (1994)

Rutherford, M.J., Anderson, K., Carzaniga, A., Heimbigner, D., Wolf, A.L.: Recon-
figuration in the Enterprise JavaBean component model. Component Deployment:
IFIP/ACM Working Conference Proceedings (2002) 67-81

Inverardi, P., Marinelli, G., Mancinelli, F.: Adaptive applications for mobile het-
erogenous devices. Proc. of 22nd Intl. Conf. on Distributed Computing Systems
Workshops (2002) 410-413

Griswold, W.G., Boyer, R., Brown, S.W., Truong, T.M.: A component architecture
for an extensible, highly integrated context-aware computing infrastructure. Proc.
of International Conference on Software Engineering (ICSE 2003) (2003)

Blair, G., Blair, L., Issarny, V., Tuma, P., Zarras, A.: The role of software ar-
chitecture in constraining adaptation in component-based middleware platforms.
Proc. of Middleware 2000 — IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing (2000)

Bergmans, L., van Halteren, A., Ferreira Pires, L., van Sinderen, M., Aksit, M.: A
QoS-control architecture for object middleware. Proc. of IDMS 2000 conference
(2000)

Wohlstadter, E., Jackson, S., Devanbu, P.. DADO: enhancing middleware to sup-
port crosscutting features in distributed, heterogeneous systems. Proc. of Interna-
tional Conference on Software Engineering (ICSE 2003) (2003) 174 —186

Truyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., Jorgensen, B.N.: Dynamic
and selective combination of extensions in component-based applications. Proc.
of the 23rd International Conference on Software Engineering (ICSE 2001) (2001)
233-242

Pawlak, R., Duchien, L., Florin, G., Martelli, L., Seinturier, L.: Distributed sepa-
ration of concerns with aspect components. Proc. of TOOLS Europe 2000 (2000)
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.,
Irwan, J.: Aspect-oriented programming. Proc. of ECOOP97 (1997)



XVIII

31.

32.

33.

34.

Tarr, P., Ossher, H., Harrison, W., Sutton Jr, S.: N-degrees of separation: Multi-
dimensional separation of concerns. Proc. of ICSE 99 (1999)

Smaragdakis, Y., Batory, D.: Implementing layered designs with mixin layers.
Proc. of ECOOP 98 (1998)

Mezini, M., Lieberherr, K.: Adaptive plug and play components for evolutionary
software development. Proc. of OOPSLA’98 (1998)

Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.: Abstracting object-
interactions using composition-filters. Object-Oriented Distributed Processing
(1993) 152-184



	LNCS 04 cover sheet
	getDoc

