Skip to main content
Log in

Analog VLSI circuits for stimulus localization and centroid computation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

An analog aggregation network that extracts the position of a stimulus in a sensory field is presented. This network is integrated with photodiodes in a VLSI circuit that performs stimulus localization through the computation of the centroid of a visual image. In this implementation, bipolar transistors and global subtraction are used to produce a high-precision centroid implementation. Theory for the localization of a bright visual stimulus is developed, and the theoretical predictions are compared to experimental data taken from the 160×160-pixel centroid circuit. Finally, the applications of these circuits to more complex feature extraction and to sensorimotor feedback systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P., DeWeerth, Analog VLSI Circuits for Sensorimotor Feedback. Ph.D. Thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 1991.

    Google Scholar 

  2. S.P. DeWeerth, A VLSI-based system for tracking visual stimuli, Proc. IEEE Intern. Conf. Robot. Autom., IEEE Computer Society Press, pp. 1336–1341, 1991.

  3. S.P., DeWeerth and C.A., Mead, A two-dimensional visual tracking array. In Advanced Research in VLSI, C.L., Seitz, ed., MIT Press: Cambridge, MA, pp. 259–275, 1988.

    Google Scholar 

  4. J., Lazzaro, S., Ryckebusch, M.A., Mahowald, and C.A., Mead, Winner-take-all networks of O(N) complexity. In Advances in Neural Information Processing Systems, vol. 1, D.S., Touretzky, ed., Morgan Kaufmann, San Mateo, CA, pp. 703–711, 1989.

    Google Scholar 

  5. C.A., Mead, A sensitive electronic photoreceptor, Proc. 1985 Chapel Hill Conference on Very Large Scale Integration. H., Fuchs, ed., Computer Society Press: Rockville, MD, pp. 463–471, 1985.

    Google Scholar 

  6. C.A., Mead, Analog VLSI and Neural Systems. Addison-Wesley: Reading, MA, 1989.

    Google Scholar 

  7. D.J.W., Noorlag, Quantitative analysis of effects causing nonlinear position response in position-sensitive photoreceptors. IEEE Trans. Electron Devices, 29, pp. 158–161, 1982.

    Google Scholar 

  8. G.P., Peterson and L., Lindholm, Position sensitive light detectors with high linearity, IEEE J. Solid-State Circuits, 13(3):392–399, 1978.

    Google Scholar 

  9. T., Poggio and W., Reichardt, Visual control of orientation behavior in the fly: Part II. Toward the underlying neural interactions, Quart. Rev. Biophys. 9:377–438, 1976.

    Google Scholar 

  10. W., Reichardt and T., Poggio, Visual control of orientation behavior in the fly: Part I. Quantitative analysis, Quart. Rev. Biophys. 9:311–375, (1976).

    Google Scholar 

  11. M.A. Sivilotti, M.A. Mahowald, and C.A. Mead, Real-time visual computation using analog CMOS processing arrays, Proc. 1987 Stanford VLSI Conf., MIT Press, Cambridge, MA, pp. 295–312.

  12. D., Sparks, The role of primate superior colliculus in sensorimotor integration, Proc. Conf. Vis. Brain, and Cooper. Computa., M., Arbib and A., Hanson, eds., MIT Press, Cambridge, MA 1983.

    Google Scholar 

  13. D.L., Standley, An object position and orientation IC with embedded imager, IEEE J. Solid-State Circuits 26(2):1853–1859, 1991.

    Google Scholar 

  14. J.E., Tanner, Integrated optical motion detection, Ph.D. Thesis, Department of Computer Science, California Institute of Technology, Pasadena, CA, 1986.

    Google Scholar 

  15. E.A., Vittoz, Micropower techniques. In Design of MOS VLSI Circuits for Telecommunications, Y., Tsividis and P., Antognetti, eds., Prentice Hall: Englewood Cliffs, NJ, pp. 104–144, 1985.

    Google Scholar 

  16. C.A., Mead and M.A., Mahowald, A silicon model of early visual processing, Neural Networks 1:91–97, 1988.

    Google Scholar 

  17. J.L. Wyatt, C. Keast, M. Seidel, D. Standley, B. Horn, T. Knight, C. Sodini, H-S Lee, and T. Poggio, Analog VLSI systems for early vision processing, Proc. 1992 IEEE Intern. Symp. Circuits Syst., IEEE Computer Society Press, 1992.

  18. M.A.C., Maher, S.P., DeWeerth, M.A., Mahowald, and C.A., Mead. Implementing neural architectures using analog VLSI circuits, IEEE Trans. Circ. Syst. 36(5):643–652, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deweerth, S.P. Analog VLSI circuits for stimulus localization and centroid computation. Int J Comput Vision 8, 191–202 (1992). https://doi.org/10.1007/BF00055151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00055151

Keywords

Navigation