Skip to main content
Log in

PRO_LIGAND: An approach to de novo molecular design. 1. Application to the design of organic molecules

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

An approach to de novo molecular design, PRO_LIGAND, has been developed that, in the environment of a large, integrated molecular design and simulation system, provides a unified framework for the generation of novel molecules which are either similar or complementary to a specified target. The approach is based on a methodology that has proved to be effective in other studies-placing molecular fragments upon target interaction sites-but incorporates many novel features such as the use of a rapid graph-theoretical algorithm for fragment placing, a generalised driver for structure generation which offers a large variety of fragment assembly strategies to the user and the pre-screening of library fragments. After a detailed description of the relevant modules of the package, PRO_LIGAND's efficacy in aiding rational drug design is demonstrated by its ability to design mimics of methotrexate and potential inhibitors for dihydrofolate reductase and HIV-1 protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walkinshaw, M.D., Med. Res. Rev., 12 (1992) 317.

    Google Scholar 

  2. Fesik, S.W., J. Biomol. NMR, 3 (1993) 261.

    Google Scholar 

  3. Navia, M.A. and Murcko, M.A., Curr. Opin. Struct. Biol., 2 (1992) 202.

    Google Scholar 

  4. Kuntz, I.D., Science, 257 (1992) 1078.

    Google Scholar 

  5. Bugg, C.E., Carson, W.M. and Montgomery, J.A., Sci. Am., 269 (1993) 60.

    Google Scholar 

  6. Ealick, S.E. and Armstrong, S.R., Curr. Opin. Struct. Biol., 3 (1993) 861.

    Google Scholar 

  7. Reich, S.H. and Webber, S.E., Perspect. Drug Discov. Design, 1 (1993) 371.

    Google Scholar 

  8. Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, M.D., J. Med. Chem., 37 (1994) 1035.

    Google Scholar 

  9. Verlinde, C.L.M.J. and Hol, W.G.J., Structure, 2 (1994) 577.

    Google Scholar 

  10. Blundell, T.L., Sibanda, B.L., Sternberg, M.J.E. and Thornton, J.M., Nature, 326 (1987) 347.

    Google Scholar 

  11. Mayer, D., Naylor, C.B., Motoc, I. and Marshall, G.R., J. Comput.-Aided Mol. Design, 1 (1987) 3.

    Google Scholar 

  12. Sheridan, R.P., Nilakantan, R., Dixon, J.S. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 899.

    Google Scholar 

  13. Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzar, J., Lico, I. and Pavlik, P.A., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Google Scholar 

  14. Cramer, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 10 (1988) 5959.

    Google Scholar 

  15. Moon, J.B. and Howe, W.J., Protein Struct. Funct. Genet., 11 (1991) 314.

    Google Scholar 

  16. Moon, J.B. and Howe, W.J., In Wermuth, C.G. (Ed.) Trends in QSAR and Molecular Modelling 92 (Proceedings of the 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, 1993, pp. 11–19.

    Google Scholar 

  17. Miranker, A. and Karplus, M., Protein Struct. Funct. Genet., 11 (1991) 29.

    Google Scholar 

  18. Caflisch, A., Miranker, A. and Karplus, M., J. Med. Chem., 36 (1993) 2142.

    Google Scholar 

  19. Nishibata, Y. and Itai, A., Tetrahedron, 47 (1991) 8985.

    Google Scholar 

  20. Nishibata, Y. and Itai, A., J. Med. Chem., 36 (1993) 2921.

    Google Scholar 

  21. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  22. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  23. Böhm, H.-J., In Kubinyi, H. (Ed.) 3D QSAE in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 386–405.

    Google Scholar 

  24. Lewis, R.A., Roe, D.C., Huang, C., Ferrin, T.E., Langridge, R. and Kuntz, I.D., J. Mol. Graph., 10 (1992) 66.

    Google Scholar 

  25. Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol. Design, 7 (1993) 23.

    Google Scholar 

  26. Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  27. Gillet, V.J., Johnson, A.P., Mata, P., Sike, S. and Williams, P., J. Comput.-Aided Mol. Design, 7 (1993) 127.

    Google Scholar 

  28. Gillet, V.J., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z. and Johnson, A.P., J. Chem. Inf. Comput. Sci., 34 (1994) 207.

    Google Scholar 

  29. Pearlman, D.A. and Murcko, M.A., J. Comput. Chem., 14 (1993) 1184.

    Google Scholar 

  30. Tschinke, V. and Cohen, N.C., J. Med. Chem., 36 (1993) 3863.

    Google Scholar 

  31. Ho, C.W.M. and Marshall, G.R., J. Comput.-Aided Mol. Design, 7 (1993) 623.

    Google Scholar 

  32. Leach, A.R. and Lewis, R.A., J. Comput. Chem., 15 (1994) 233.

    Google Scholar 

  33. Leach, A.R. and Kilvington, S.R., J. Comput.-Aided Mol. Design, 8 (1994) 283.

    Google Scholar 

  34. Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Protein Struct. Funct. Genet., 19 (1994) 199.

    Google Scholar 

  35. Ball, J., Fishleigh, R.V., Greaney, P., Li, J., Marsden, A., Platt, E., Pool, J.L. and Robson, B., In Bawden, D. and Mitchell, E.M. (Eds.) Chemical Structure Information Systems: Beyond the Structure Diagram, Ellis Horwood, Chichester, 1990, pp. 107–123.

    Google Scholar 

  36. Robson, B., Ball, J., Fishleigh, R.V., Greaney, P., Li, J., Marsden, A., Platt, E. and Pool, J.L., Biochem. Soc. Symp., 57 (1991) 91.

    Google Scholar 

  37. Frenkel, D., Clark, D.E., Li, J., Murray, C.W., Robson, B., Waszkowycz, B. and Westhead, D.R., J. Comput.-Aided Mol. Design, submitted for publication.

  38. Waszkowycz, B., Clark, D.E., Frenkel, D., Li, J., Murray, C.W., Robson, B. and Westhead, D.R., J. Med. Chem., 37 (1994) 3994.

    Google Scholar 

  39. Klebe, G., J. Mol. Biol., 237 (1994) 212.

    Google Scholar 

  40. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  41. Westhead, D.R., Clark, D.E., Frenkel, D., Li, J., Murray, C.W., Robson, B. and Waszkowycz, B., J. Comput.-Aided Mol. Design, 9 (1995) in press.

  42. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  43. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  44. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  45. Robson, B. and Platt, E., J. Mol. Biol., 188 (1986) 258.

    Google Scholar 

  46. Morley, S.D., Abraham, R.J., Haworth, I.S., Jackson, D.E., Saunders, M.R. and Vinter, J.G., J. Comput.-Aided Mol. Design, 5 (1991) 475.

    Google Scholar 

  47. Bartlett, P.A., Shea, G.T., Telfer, S.J. and Waterman, S., In Roberts, S.M., Ley, S.V. and Campbell, M.M. (Eds.) Chemical and Biological Problems in Molecular Recognition, ROyal Society of Chemistry, Cambridge, 1989, pp. 182–196.

    Google Scholar 

  48. Lauri, G. and Bartlett, P.A., J. Comput.-Aided Mol. Design, 8 (1994) 51.

    Google Scholar 

  49. Ullmann, J.R., J. Assoc. Comput. Machinery, 23 (1976) 31.

    Google Scholar 

  50. Brint, A.T. and Willett, P., J. Mol. Graph., 5 (1987) 49.

    Google Scholar 

  51. Golender, V.E. and Vorpagel, E.R., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 137–149.

    Google Scholar 

  52. Bron, C. and Kerbosch, J., Commun. Assoc. Comput. Machinery, 16 (1973) 575.

    Google Scholar 

  53. Brint, A.T. and Willett, P., J. Chem. Inf. Comput. Sci., 27 (1987) 152.

    Google Scholar 

  54. Ho, C.W.M. and Marshall, G.R., J. Comput.-Aided Mol. Design, 7 (1993) 3.

    Google Scholar 

  55. Kuhl, F.S., Crippen, G.M. and Friesen, D.K., J. Comput. Chem., 5 (1984) 24.

    Google Scholar 

  56. Smellie, A.S., Crippen, G.M. and Richards, W.G., J. Chem. Inf. Comput. Sci., 31 (1991) 386.

    Google Scholar 

  57. Grindley, H.M., Artymiuk, P.J., Rice, D.W. and Willett, P., J. Mol. Biol., 229 (1993) 707.

    Google Scholar 

  58. Jakes, S.E. and Willett, P., J. Mol. Graph., 4 (1986) 12.

    Google Scholar 

  59. Willett, P., Similarity and Clustering in Chemical Information Systems, Research Studies Press, Letchworth, 1987.

    Google Scholar 

  60. Bawden, D., In Warr, W.A. (Ed.) Chemical Structures 2: The International Language of Chemistry, Springer, Heidelberg, 1993, pp. 383–388.

    Google Scholar 

  61. Martin, Y.C., Bures, M.G. and Willett, P., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 1, VCH, New York, NY, 1990, pp. 213–263.

    Google Scholar 

  62. Moock, T.E., Henry, D.R., Ozkabak, A.G. and Alamgir, M., J. Chem. Inf. Comput. Sci., 34 (1994) 184.

    Google Scholar 

  63. Clark, D.E., Jones, G., Willett, P., Kenny, P.A. and Glen, R.C., J. Chem. Inf. Comput. Sci., 34 (1994) 197.

    Google Scholar 

  64. Kuyper, L.F., In Perun, T.J. and Propst, C.L. (Eds.) Computer-Aided Drug Design, Marcel Dekker, New York, NY, 1989, pp. 327–369.

    Google Scholar 

  65. Ramnarayan, K., Hausheer, F.H. and Singh, U.C., CDA News, 8 (1993) 18.

    Google Scholar 

  66. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  67. Kohl, N.E., Emini, E.A., Schlief, W.A., David, L.J., Heimbach, J.C., Dixon, R.A.F., Scolnick, E.M. and Sigal, I.S., Proc. Natl. Acad. Sci. USA, 85 (1988) 4686.

    Google Scholar 

  68. McQuade, T.J., Tomaselli, A.G., Liu, L., Karacostas, V., Moss, B., Sawyer, T.K., Heinrikson, R.L. and Tarpley, W.G., Science, 247 (1990) 454.

    Google Scholar 

  69. Appelt, K., Perspect. Drug Discov. Design, 1 (1993) 23.

    Google Scholar 

  70. Fitzgerald, P.M.D., Curr. Opin. Struct. Biol., 3 (1993) 868.

    Google Scholar 

  71. Redshaw, S., Exp. Opin. Invest. Drugs, 3 (1994) 273.

    Google Scholar 

  72. Fitzgerald, P.M.D., McKeever, B.M., VanMiddlesworth, J.F., Springer, J.P., Heimbach, J.C., Leu, C.-T., Herber, W.K., Dixon, R.A.F. and Darke, P.L., J. Biol. Chem., 265 (1990) 14209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, D.E., Frenkel, D., Levy, S.A. et al. PRO_LIGAND: An approach to de novo molecular design. 1. Application to the design of organic molecules. J Computer-Aided Mol Des 9, 13–32 (1995). https://doi.org/10.1007/BF00117275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117275

Keywords

Navigation