Skip to main content

Advertisement

Log in

HomologyPlot: Searching for homology to a family of proteins using a database of unique conserved patterns

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A new database of conserved amino acid residues is derived from the multiple sequence alignment of over 84 families of protein sequences that have been reported in the literature. This database contains sequences of conserved hydrophobic core patterns which are probably important for structure and function, since they are conserved for most sequences in that family. This database differs from other single-motif or signature databases reported previously, since it contains multiple patterns for each family. The new database is used to align a new sequence with the conserved regions of a family. This is analogous to reports in the literature where multiple sequence alignments are used to improve a sequence alignment. A program called Homology-Plot (suitable for IBM or compatible computers) uses this database to find homology of a new sequence to a family of protein sequences. There are several advantages to using multiple patterns. First, the program correctly identifies a new sequence as a member of a known family. Second, the search of the entire database is rapid and requires less than one minute. This is similar to performing a multiple sequence alignment of a new sequence to all of the known protein family sequences. Third, the alignment of a new sequence to family members is reliable and can reproduce the alignment of conserved regions already described in the literature. The speed and efficiency of this method is enhanced, since there is no need to score for insertions or deletions as is done in the more commonly used sequence alignment methods. In this method only the patterns are aligned. HomologyPlot also provides general information on each family, as well as a listing of patterns in a family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argos P., Vingron M. and Vogt G., Protein Eng., 4 (1991) 375.

    Google Scholar 

  2. Schuler G.D., Atshchul S.F. and Lipman D.J., Protein Struct. Funct. Genet., 9 (1991) 180.

    Google Scholar 

  3. Kauzman W., Adv. Protein Chem., 14 (1959) 1.

    Google Scholar 

  4. Henrissat B., Saloheimo M., Lavaitte S. and Knowles J.K.C., Protein Struct. Funct. Genet., 8 (1990) 251.

    Google Scholar 

  5. Altschuh D., Protein Eng., 2 (1988) 193.

    Google Scholar 

  6. Taylor W.R., J. Mol. Biol., 188 (1986) 233.

    Google Scholar 

  7. Sweet R.M. and Eisenberg D., J. Mol. Biol., 171 (1983) 479.

    Google Scholar 

  8. Hubbord T.J.P. and Blundell T.L., Protein Eng., 1 (1987) 159.

    Google Scholar 

  9. Zielenkiewicz P. and Rabczenko A., Protein Eng., 2 (1988) 115.

    Google Scholar 

  10. Kanaoka M., Kishimoto F., Ueki Y. and Umeyama H., Protein Eng., 2 (1989) 347.

    Google Scholar 

  11. Umezawa Y. and Umeyama H., Chem. Pharm. Bull., 36 (1988) 4652.

    Google Scholar 

  12. Bowie J.U., Clarke N.D., Pabo C.O. and Saver R.T., Protein Struct. Funct. Genet., 7 (1990) 257.

    Google Scholar 

  13. Taylor E.C., Horton M.R. and Krause P.R., Comput. Biomed. Res., 24 (1991) 72.

    Google Scholar 

  14. Sander C. and Schneider R., Protein Struct. Funct. Genet., 9 (1991) 56.

    Google Scholar 

  15. Sato Y., Ikeuchi Y. and Kanehisa M., Protein Struct. Funct. Genet., 8 (1990) 341.

    Google Scholar 

  16. Barton G.J. and Steinberg M.J.E., J. Mol. Biol., 212 (1990) 389.

    Google Scholar 

  17. Argos P., J. Mol. Biol., 193 (1987) 385.

    Google Scholar 

  18. Bashford D., Chothia C. and Lesk A.M., J. Mol. Biol., 196 (1987) 199.

    Google Scholar 

  19. Greer J., Protein Struct. Funct. Genet., 7 (1990) 317.

    Google Scholar 

  20. Pearson W.R., Methods Enzymol., 183 (1990) 63.

    Google Scholar 

  21. Bairoch A., Nucleic Acids Res., 19 (1991) 2241.

    Google Scholar 

  22. Aitken A., Identification of Protein Consensus Sequences. Active Site Motifs, Phosphorylation and other Posttranslational Modifications, Ellis Horwood, New York, NY, 1990, p. 152.

    Google Scholar 

  23. Dayhoff M.D., Atlas of Protein Sequence and Structure, Vol. 5, Supplement 3, National Biomedical Research Foundation, Washington, DC, 1978.

    Google Scholar 

  24. Tellam R.L., Morton D.J. and Clarke F.M., Trends Biochem. Sci., 14 (1989) 130.

    Google Scholar 

  25. Davies P.L. and Hew C.L., FASEB J., 4 (1990) 2460.

    Google Scholar 

  26. Webster T.A., Lathrop R.H. and Smith T.F., Biochemistry, 26 (1987) 6950.

    Google Scholar 

  27. Nishi M., Sanke T., Nagamatsu S., Bell G.I. and Steiner D.F., J. Biol. Chem., 265 (1990) 4173.

    Google Scholar 

  28. Scully J.L. and Evans D.R., Protein Struct. Funct. Genet., 9 (1991) 191.

    Google Scholar 

  29. Abad-Zapatero C., Rydel T.J. and Erickson J., Protein Struct. Funct. Genet., 8 (1990) 62.

    Google Scholar 

  30. Gilliland G.L., Winborns E.L., Nachman J. and Wlodawer A., Protein Struct. Funct. Genet., 8 (1990) 82.

    Google Scholar 

  31. James M.N.G. and Sielecki A., Biol. Macro Assem., 3 (1987) 413.

    Google Scholar 

  32. Tang J., James M.N.G., Hsu I.N., Jenkins J.A. and Blundell T.L., Nature, 271 (1978) 618.

    Google Scholar 

  33. Ryden L. and Lundgren J.O., Nature, 261 (1976) 344.

    Google Scholar 

  34. Murata M., Richardson J.S. and Sussman D.J.L., Proc. Natl. Acad. Sci. USA, 82 (1985) 3073.

    Google Scholar 

  35. Luthy R., McLachlan A.D. and Eisenberg D., Protein Struct. Funct. Genet., 10 (1991) 229.

    Google Scholar 

  36. Cowan S.W., Newcomer M.E. and Jones T.A., Protein Struct. Funct. Genet., 8 (1990) 44.

    Google Scholar 

  37. Montal M., FASEB J., 4 (1990) 2623.

    Google Scholar 

  38. Wistow G.J., Pisano M.M. and Chepelinsky A.B., Trends Biochem. Sci., 16 (1991) 170.

    Google Scholar 

  39. Henneke C.M., Danson M.J., Hough D.W. and Osguthorpe D.J., Protein Eng., 2 (1989) 597.

    Google Scholar 

  40. Olivera B.M., Rivier J., Scott J.K., Hillyard D.R. and Cruz L.J., J. Biol. Chem., 266 (1991) 22067.

    Google Scholar 

  41. Dickerson R.E., Sci. Am., 242 (1980) 137.

    Google Scholar 

  42. Ganz T., Selsted M.E. and Lehrer R.I., Eur. J. Haematol., 1 (1990) 1.

    Google Scholar 

  43. Sokolovsky M., Trends Biochem. Sci., 16 (1991) 261.

    Google Scholar 

  44. Chin C.C.Q., J. Protein Chem., 9 (1990) 427.

    Google Scholar 

  45. Baron M., Norman D.G. and Campbell I.D., Trends Biochem. Sci., 16 (1991) 13.

    Google Scholar 

  46. Shoyab M., Plowman G.D., McDonald V.L., Bradley J.G. and Todaro G.J., Science, 243 (1989) 1074.

    Google Scholar 

  47. Linder P., Lasko P.F., Ashbumer M., Leary P., Nielson P.J., Nishi K. and Schnier J., Nature, 337 (1989) 121.

    Google Scholar 

  48. Ragland M., Briant J.F., Gagnon J., Laulhere J.P., Massenet O. and Theil E.C., J. Biol. Chem., 265 (1990) 18339.

    Google Scholar 

  49. Pastors A. and Lesk A.M., Protein Struct. Funct. Genet., 8 (1990) 133.

    Google Scholar 

  50. Hockenhull-Johnson J.D., Stern M.S., Martin P., Dass C., Desiderio D.M., Wittenberg J.B., Vinogradov S.N. and Walz D.A., J. Protein Chem., 10 (1991) 609.

    Google Scholar 

  51. Suzuki T. and Furukohi T., J. Protein Chem., 9 (1990) 69.

    Google Scholar 

  52. Clark, B.F.C., Jensen, M., Kjeldgaard, M. and Thirup, S., In Hook, J.B. and Poste, G. (Eds.) Protein Design and Development of New Therapeutics and Vaccines, New Horizons in Therapeutics, Smith Kline and French Laboratories Research Symposia Series, 1990, pp. 179–208.

  53. Mason A.J., Hayflick J.S., Ling N., Esch F., Ueno N., Ying S.Y., Guillemin R., Niall H. and Seeburg P.H., Nature, 318 (1985) 659.

    Google Scholar 

  54. Blundell T.L. and Humbel R.E., Nature, 287 (1980) 781.

    Google Scholar 

  55. Priestle J.P., Schar H.P. and Grutter M.G., Proc. Natl. Acad. Sci. USA, 86 (1989) 9667.

    Google Scholar 

  56. Caldwell J.B., Strike P.M. and Kortt A.A., J. Protein Chem., 9 (1990) 493.

    Google Scholar 

  57. Onesti S., Brick P. and Blow D.M., J. Mol. Biol., 217 (1991) 153.

    Google Scholar 

  58. Sharon N. and Lis H., FASEB J., 4 (1990) 3198.

    Google Scholar 

  59. LaskowskiJr. M., Apostol I., Ardelt W., Cook J., Gilleto A., Kelly C.A., Lu W., Park S.J., Qasim M.A., Whadey H.E., Wieczorek A. and Wynn R., J. Protein Chem., 9 (1990) 715.

    Google Scholar 

  60. Katzin B.J., Collins E.J. and Robertus J.D., Protein Struct. Funct. Genet., 10 (1991) 251.

    Google Scholar 

  61. Barbacid M., Annu. Rev. Biochem., 56 (1987) 779.

    Google Scholar 

  62. Santos E. and Nebreda R., FASEB J., 3 (1989) 2151.

    Google Scholar 

  63. Toh H., Ono M., Saigo K. and Miyata T., Nature, 315 (1985) 691.

    Google Scholar 

  64. Pechik I.V., Gustchina A.E., Antireever N.S. and Fedorov A.A., FEBS Lett., 247 (1989) 118.

    Google Scholar 

  65. Umezawa Y. and Umeyama H., Chem. Pharm. Bull., 36 (1988) 4652.

    Google Scholar 

  66. James M.N.G., Delbare L.T.J. and Brayer G.D., Can. J. Biochem., 56 (1978) 396.

    Google Scholar 

  67. Eklund H., Gleason F.K. and Holmgren A., Protein Struct. Funct. Genet., 11 (1991) 13.

    Google Scholar 

  68. George D.G., Barker W.C. and Hunt L.T., Methods Enzymol., 183 (1990) 333.

    Google Scholar 

  69. Go M. and Miyazawa S., Int. J. Pept. Protein Res., 15 (1980) 211.

    Google Scholar 

  70. Eisenberg D., Weiss R.M., Terwilliger T.C. and Wilcox W., J. Chem. Soc., Faraday Symp., 17 (1982) 105.

    Google Scholar 

  71. Kyte J. and Doolittle R.F., J. Mol. Biol., 157 (1982) 105.

    Google Scholar 

  72. Janin J., Nature, 277 (1979) 491.

    Google Scholar 

  73. Barker W.C., George D.G. and Hunt L.T., Methods Enzymol., 183 (1990) 31.

    Google Scholar 

  74. Pastore A., Lesk A.M., Bolognesi M. and Onesti S., Protein Struct. Funct. Genet., 4 (1988) 240.

    Google Scholar 

  75. Hodges R.S., Sodek J., Smilie L.B. and Jurasek L., Cold Spring Harbor Symp. Quant. Biol., 37 (1972) 299.

    Google Scholar 

  76. Lupas A., Van Dyke M. and Stock J., Science, 252 (1991) 1162.

    Google Scholar 

  77. Kerppola T.K. and Curran T., Curr. Opin. Struct. Biol., 1 (1991) 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, J.M.R., Hodges, R.S. HomologyPlot: Searching for homology to a family of proteins using a database of unique conserved patterns. J Computer-Aided Mol Des 8, 193–210 (1994). https://doi.org/10.1007/BF00119867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119867

Key words