Skip to main content
Log in

Nonlinear optimization: Characterization of structural stability

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study global stability properties for differentiable optimization problems of the type:

% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaai% ikaGqaaiaa-jzacaGGSaGaamisaiaacYcacaqGGaGaam4raiaacMca% caGG6aGaaeiiaiaab2eacaqGPbGaaeOBaiaabccacaWFsgGaaeikai% aadIhacaqGPaGaaeiiaiaab+gacaqGUbGaaeiiaiaad2eacaGGBbGa% amisaiaacYcacaWGhbGaaiyxaiabg2da9iaacUhacaWG4bGaeyicI4% CeeuuDJXwAKbsr4rNCHbacfaGae4xhHe6aaWbaaSqabeaacaWGUbaa% aOGaaiiFaiaabccacaWGibGaaiikaiaadIhacaGGPaGaeyypa0JaaG% imaiaacYcacaqGGaGaam4raiaacIcacaWG4bGaaiykamaamaaabaGa% eyyzImlaaiaaicdacaGG9bGaaiOlaaaa!6B2E!\[P(f,H,{\text{ }}G):{\text{ Min }}f{\text{(}}x{\text{) on }}M[H,G] = \{ x \in \mathbb{R}^n |{\text{ }}H(x) = 0,{\text{ }}G(x)\underline \geqslant 0\} .\]

Two problems are called equivalent if each lower level set of one problem is mapped homeomorphically onto a corresponding lower level set of the other one. In case that P(% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaaceWFsg% GbaGaacaWFSaGaa8hiaiqadIeagaacaiaacYcacaWFGaGabm4rayaa% iaaaaa!3EBF!\[\tilde f, \tilde H, \tilde G\]) is equivalent with P(f, H, GG) for all (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaaceWFsg% GbaGaacaWFSaGaa8hiaiqadIeagaacaiaacYcacaWFGaGabm4rayaa% iaaaaa!3EBF!\[\tilde f, \tilde H, \tilde G\]) in some neighbourhood of (f, H, G) we call P(f, H, G) structurally stable; the topology used takes derivatives up to order two into account. Under the assumption that M[H, G] is compact we prove that structural stability of P(f, H, GG) is equivalent with the validity of the following three conditions:

  1. C.1.

    The Mangasarian-Fromovitz constraint qualification is satisfied at every point of M[H, G].

  2. C.2.

    Every Kuhn-Tucker point of P(f, H, GG) is strongly stable in the sense of Kojima.

  3. C.3.

    Different Kuhn-Tucker points have different (f-)values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guddat, J. and Jongen, H. Th. (1987), Structural Stability in Nonlinear Optimization, Optimization 18, 617–631.

    Google Scholar 

  2. Hirsch, M. W. (1976), Differential Topology, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  3. Jongen, H. Th., Jonker, P., and Twilt, F. (1986), Nonlinear Optimization in 64–1, II. Transversality, Flows, Parametric Aspects, Peter Lang Verlag, Frankfurt a.M., Bern, New York.

    Google Scholar 

  4. Gauvin, J. (1977), A Necessary and Sufficient Regularity Condition to Have Bounded Multipliers in Nonconvex Programming, Mathematical Programming 12, 136–138.

    Google Scholar 

  5. Kojima, M. (1980), Strongly Stable Stationary Solutions in Nonlinear Programs, in S. M. Robinson (ed.) Analysis and Computation of Fixed Points, Academic Press, New York.

    Google Scholar 

  6. Guddat, J., Jongen, H. Th., and Rückmann, J. (1986), On Stability and Stationary Points in Nonlinear Optimization, J. Australian Math. Soc., Series B 28, 36–56.

    Google Scholar 

  7. Jongen, H. Th., Jonker, P., and Twilt, F. (1983), Nonlinear Optimization in 64–2, I. Morse Theory, Chebychev Approximation, Peter Lang Verlag, Frankfurt a.M., Bern, New York.

    Google Scholar 

  8. Jongen, H. Th., Twilt, F., and Weber, G.-W. (1989), Semi-Infinite Optimization: Structure and Stability of the Feasible Set, Memorandum No. 838, Universiteit Twente. To appear in Journal of Optimization Theory and Applications.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jongen, H.T., Weber, G.W. Nonlinear optimization: Characterization of structural stability. J Glob Optim 1, 47–64 (1991). https://doi.org/10.1007/BF00120665

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120665

AMS 1980 Subject Classification

Key words

Navigation