Skip to main content
Log in

Noncoercive hemivariational inequality approach to constrained problems for star-shaped admissible sets

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The hemivariational inequality approach is used in order to establish the existence of solutions to a large class of noncoercive constrained problems in a reflexive Banach space, in which the set of all admissible elements is not convex but fulfills some star-shaped property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Adly, D.Goeleven and M.Théra (1996), Recession Mappings and Noncoercive Variational Inequalities. Nonlinear Analysis, T.M.A. 26, pp. 1573–1603.

    Google Scholar 

  2. S.Adly and D.Goeleven (1995), Homoclinic Orbits for Some Class of Hemivariational Inequalities. Applicable Analysis 58, pp. 229–240.

    Google Scholar 

  3. H. Attouch, Z. Chbani, and A. Moudafi (1993), Recession Operators and Solvability of Variational Problems. Preprint, Laboratoire d'Analyse Convexe, Université de Montpellier.

  4. C.Baiocchi, G.Buttazzo, F.Gastaldi, and F.Tomarelli (1988), General Existence Theorems for Unilateral Problems in Continuum Mechanics. Arch. Rat. Mech. Anal. 100(2), pp. 149–180.

    Google Scholar 

  5. H. Brézis and L. Nirenberg (1978), Characterizations of the Ranges of Some Nonlinear Operators and Applications to Boundary Value Problems. Ann. Scuola Normale Superiore Pisa, Classe di Scienze. Serie IV, vol. V, N°2, pp. 225–326.

    Google Scholar 

  6. F.E.Browder and P.Hess (1972). Nonlinear Mappings of Monotone Type in Banach Spaces. Journal of Functional Analysis. 11, 251–294.

    Google Scholar 

  7. F.E. Browder (1976). Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces. American Mathematical Society. Vol. XVIII, Part 2, 1976. Proceedings of Symposia in Pure Mathematics.

  8. F.H.Clarke (1984). Nonsmooth Analysis and Optimization. Wiley, New York.

    Google Scholar 

  9. R.Dautray and J.-L.Lions (1988). Analyse Mathématique et Calcul Numérique pour les sciences et les techniques, Méthodes Variationnelles. Masson Paris. Vol. 4.

    Google Scholar 

  10. J. Dieudonné (1968). Eléments d'Analyse. Gauthier-Villars.

  11. G.Fichera (1972). Boundary Value Problems in Elasticity with Unilateral Constraints Handbuch der Physik. Springer-Verlag, Berlin-Heidelberg-New York. VIa.2, pp. 347–389.

    Google Scholar 

  12. D.Goeleven (1993). On the Solvability of Noncoercive Linear Variational Inequalities in Separable Hilbert Spaces. Journal of Optimization Theory and Applications 79, pp. 493–511.

    Google Scholar 

  13. D.Goeleven and M.Théra (1995). Semicoercive Variational Hemivariational Inequalities. Journal of Global Optimization 6, pp. 367–381.

    Google Scholar 

  14. N.Kikuchi and J.T.Oden (1988). Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia.

    Google Scholar 

  15. Z.Naniewicz (1994). Hemivariational Inequality Approach to Constrained Problems for Star-Shaped Admissible Sets. Journal of Optimization Theory and Applications 83, pp. 97–112.

    Google Scholar 

  16. Z.Naniewicz (1992). On the Pseudo-Monotonocity of Generalized Gradients of Nonconvex Functions. Applicable Analysis 47, pp. 151–172.

    Google Scholar 

  17. Z.Naniewicz and P.D.Panagiotopoulos (1995). Mathematical Theory of Hemivariational Inequalities. Marcel Dekker, Inc., New York.

    Google Scholar 

  18. P.D.Panagiotopoulos (1985). Hemivariational Inequalities and Substationarity in the Static Theory of v. Karman Plates. ZAMM, Z. Angew. Math. u. Mech. 65(6), pp. 219–229.

    Google Scholar 

  19. P.D. Panagiotopoulos (1988). Hemivariational Inequalities and their Applications. Birkhaüser Verlag. In: J.J. Moreau, P.D. Panagiotopoulos, G. Strang (eds), Topics in Nonsmooth Mechanics.

  20. P.D.Panagiotopoulos (1981). Nonconvex Superpotentials in the Sence of F.H. Clarke and Applications. Mech. Res. Comm. 8, pp. 335–340.

    Google Scholar 

  21. P.D.Panagiotopoulos (1983). Nonconvex Energy Function, Hemivariational Inequalities and Substationarity Principles. Acta Mech. 48, pp. 160–183.

    Google Scholar 

  22. P.D.Panagiotopoulos (1993). Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  23. D.Pascali and S.Sburlan (1978). Nonlinear Mappings of Monotone Type. Sijthoff and Noordhoff International Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  24. R.T.Rockafellar (1970). Convex Analysis. Princeton, University Press, Princeton N.J.

    Google Scholar 

  25. F. Tomarelli (1993). Noncoercive Variational Inequalities for Pseudomonotone Operators. Dipartimento di Matematica Politecnico di Milano. Preprint no83IP.

  26. M.M.Vainberg (1973). Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Chargé de Recherches du Fonds National Belge de la Recherche Scientifique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goeleven, D. Noncoercive hemivariational inequality approach to constrained problems for star-shaped admissible sets. J Glob Optim 9, 121–140 (1996). https://doi.org/10.1007/BF00121659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121659

Key words

Navigation