Skip to main content
Log in

Rational design of hirulog-type inhibitors of thrombin

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The two crystal structures of thrombin complexed with its most potent natural inhibitor hirudin and with the active-site inhibitor d-Phe-Pro-Arg-CH2Cl [Rydel, T.J. et al., J. Mol. Biol., 221 (1991) 583; Bode, W. et al., EMBO J., 8 (1989) 3467] were used as a basis to design a new inhibitor, combining the high specificity of the polypeptide hirudin with the simpler chemistry of an organic compound. In the new inhibitor, the C-terminal amino acid residues 53–65 of hirudin are linked by a spacer peptide of four glycines to the active-site inhibitor NAPAP (Nα-(2-naphthyl-sulfonyl-glycyl)-dl-p-amidinophenylalanyl-piperidine). Energy minimization techniques served as a tool to determine the preferred configuration at the amidinophenylalanine and the modified piperidine moiety of the inhibitor. The predictions are supported by the interaction energies determined for d- and l-NAPAP in complex with thrombin, which are in good agreement with experimentally determined dissociation constants. The conformational flexibility of the linker peptide in the new inhibitors was investigated with molecular dynamics techniques. A correlation between the P1′ position and the interactions of the linker peptide with the protein is suggested. Modifications of the linker peptide are proposed based on the distribution of its main-chain torsion angles in order to enhance its binding to thrombin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tulinsky, A. and Qiu, X., Blood Coagul. Fibrinolysis, 4 (1993) 305.

    Google Scholar 

  2. Bode, W., Turk, D. and Karshikov, A., Protein Sci., 1 (1992) 426.

    Google Scholar 

  3. Karshikov, A., Bode, W., Tulinsky, A. and Stone, S.R., Protein Sci., 1 (1992) 727.

    Google Scholar 

  4. Rydel, T.J., Tulinsky, A., Bode, W. and Huber, R., J. Mol. Biol., 221 (1991) 583.

    Google Scholar 

  5. Grütter, M.G., Priestle, J.P., Rahuel, J., Grossenbacher, H., Bode, W., Hofsteenge, J. and Stone, S.R., EMBO J., 9 (1990) 2361.

    Google Scholar 

  6. Badgy, D., Barabas, E., Graf, L., Petersen, T.E. and Magnusson, S., Methods Enzymol., 25 (1976) 669.

    Google Scholar 

  7. Maraganore, J.M., Bourdon, P., Jablonski, J., Ramachandran, K.L. and FentonII, J.W., Biochemistry, 29 (1990) 7095.

    Google Scholar 

  8. DiMaio, J., Ni, F., Gibbs, B. and Konishi, Y., FEBS Lett., 282 (1991) 47.

    Google Scholar 

  9. Skrzypczak-Jankun, E., Carperos, V.E., Ravichandran, K.G., Tulinsky, A., Westbrook, M. and Maraganore, J.M., J. Mol. Biol., 221 (1991) 1379.

    Google Scholar 

  10. Qiu, X., Padmanabhan, K.P., Carperos, V.E., Tulinsky, A., Kline, T., Maraganore, J.M. and FentenII, J.W., Biochemistry, 31 (1992) 11689.

    Google Scholar 

  11. Mattson, C.H., Erikson, E. and Nilsson, S., Folia Haematol., 109 (1992) 543.

    Google Scholar 

  12. Okamoto, S., Hijikata, A., Kikumoto, R., Tonomura, S., Hara, H., Ninimiya, K., Maruyama, A., Sugano, M. and Tamao, Y., Biochem. Biophys. Res. Commun., 101 (1981) 440.

    Google Scholar 

  13. Stuber, W., Kosina, H. and Heimburger, N., Int. J. Pept. Protein Res., 31 (1988) 63.

    Google Scholar 

  14. Brandstetter, H., Turk, D., Hoeffken, W., Grosse, D., Stürzebecher, J., Martin, P.D., Edwards, B.F.P. and Bode, W., J. Mol. Biol., 226 (1992) 1085.

    Google Scholar 

  15. Banner, D.W. and Hadváry, P., J. Biol. Chem., 266 (1991) 20085.

    Google Scholar 

  16. Bode, W., Turk, D. and Stürzebecher, J., Eur. J. Biochem., 193 (1990) 175.

    Google Scholar 

  17. Stürzebecher, J., Walsmann, P., Voigt, B. and Wagner, G., Thromb. Res., 36 (1984) 457.

    Google Scholar 

  18. Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S.R. and Hofsteenge, J., EMBO J. 8 (1989) 3467.

    Google Scholar 

  19. Hagler, A.T. and Lifson, S., J. Am. Chem. Soc., 96 (1974) 5319.

    Google Scholar 

  20. Nicholas, J.B., Vance, R., Martin, E., Burke, B.J. and Hopfinger, A.J., J. Phys. Chem., 95 (1991) 9803.

    Google Scholar 

  21. Schechter, T. and Berger, A., Biochem. Biophys. Res. Commun., 27 (1967) 157.

    Google Scholar 

  22. DiMaio, J., Gibbs, B., Munn, D., Lefebvre, J., Ni, F. and Konishi, Y., J. Biol. Chem., 265 (1990) 21698.

    Google Scholar 

  23. LeBonniec, B.F. and Esmon, C.T., Proc. Natl. Acad. Sci. USA, 88 (1991) 7371.

    Google Scholar 

  24. Ramachandran, G.N. and Sasisekharan, V., Adv. Protein Chem., 23 (1968) 283.

    Google Scholar 

  25. Niefind, K. and Schomburg, D., J. Mol. Biol., 219 (1991) 481.

    Google Scholar 

  26. Ponder, J.W. and Richards, F.M., J. Mol. Biol., 193 (1987) 775.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egner, U., Hoyer, GA. & Schleuning, WD. Rational design of hirulog-type inhibitors of thrombin. J Computer-Aided Mol Des 8, 479–490 (1994). https://doi.org/10.1007/BF00123661

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123661

Key words