Skip to main content
Log in

Electrostatic complementarity between proteins and ligands. 2. Ligand moieties

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Drug design strategies consider factors governing intermolecular interactions to build up putative ligands. In many strategies, the ligand is constructed using fragments which are placed in the site sequentially. The optimization is then performed with each fragment. We would like to examine if this optimization strategy could generate ligands with optimal electrostatic interactions. The electrostatic complementarities between constituent moieties and the receptor site have been calculated. The whole-ligand complementarity does not appear to be the mathematical mean of the individual complementarities, nor have we found a simple relationship between the moiety and whole-ligand complementarities. The results demonstrate clearly that, using a simple model, it is very difficult to predict the electrostatic potential complementarity of the whole ligand from the complementarities of its constituent chemical moieties. This means that ligand design strategies must optimize the electrostatic complementarity globally, and not moiety by moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 8 (1994) 513.

    Google Scholar 

  2. Dreyer, G.B., Lambert, D.M., Meek, T.D., Carr, T.J., Tomaszek, T.A., Fernandez, A.V., Bartus, H., Cacciavillani, E., Hassell, A.M., Minnich, M., Petteway, S.R. and Metcalf, B.W., Biochemistry, 31 (1992) 6646.

    Google Scholar 

  3. Abdel-Meguid, S.S., Zhao, B., Murthy, D.H.M., Winborne, E., Choi, J.-K., DesJarlais, R.L., Minnich, M.D., Culp, J.S., Debouck, C., Tomaszek, T.A., Meek, T.D. and Dreyer, G.B., Biochemistry, 32 (1993) 7972.

    Google Scholar 

  4. Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R., Clawson, L., Selk, L., Kent, S.B.H. and Wlodawer, A., Science, 246 (1989) 1149.

    Google Scholar 

  5. Bone, R., Vacca, J.P., Anderson, P.S. and Holloway, M.K., J. Am. Chem. Soc., 113 (1991) 9382.

    Google Scholar 

  6. Fitzgerald, P.M.D., McKeever, B.M., Van Middlesworth, J.F., Springer, J.P., Heimbach, J.C., Leu, C.-T., Herbert, W.K., Dixon, R.A.F. and Drake, P.L., J. Biol. Chem., 265 (1990) 14209.

    Google Scholar 

  7. Swain, A.L., Miller, M.M., Green, J., Rich, D.H., Schneider, J., Kent, S.B.H. and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 87 (1990) 8805.

    Google Scholar 

  8. Jaskólski, M., Tomasselli, A.G., Sawyer, T.K., Staples, D.G., Heinrikson, R.L., Schneider, J., Kent, S.B.H. and Wlodawer, A., Biochemistry, 30 (1991) 1600.

    Google Scholar 

  9. Diederichs, K. and Schulz, G.E., J. Mol. Biol., 217 (1991) 541.

    Google Scholar 

  10. Huber, R., Schneider, M., Mayr, I., Müller, R., Deutzmann, R., Suter, F., Zuber, H., Falk, H. and Kayser, H., J. Mol. Biol., 198 (1987) 499.

    Google Scholar 

  11. Karpusas, M., Holland, D. and Remington, S.J., Biochemistry, 30 (1991) 6024.

    Google Scholar 

  12. Davies, J.F., Delcamp, T.J., Prendergast, N.J., Ashford, V.A., Freisheim, J.H. and Kraut, J., Biochemistry, 29 (1990) 9467.

    Google Scholar 

  13. Bystroff, C., Oatley, S.J. and Kraut, J., Biochemistry, 29 (1990) 3263.

    Google Scholar 

  14. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. and Clardy, J., Science, 252 (1991) 839.

    Google Scholar 

  15. Karplus, P.A., Daniels, M.J. and Herriott, J.R., Science, 251 (1991) 60.

    Google Scholar 

  16. Schreuder, H.A., Van der Laan, J.M., Hol, W.G.J. and Drenth, J., J. Mol. Biol., 199 (1988) 637.

    Google Scholar 

  17. Skarzynski, T., Moody, P.C.E. and Wonacott, A.J., J. Mol. Biol., 193 (1987) 171.

    Google Scholar 

  18. Lindqvist, Y., J. Mol. Biol., 209 (1989) 151.

    Google Scholar 

  19. Smith, W.W., Burnett, R.M., Darling, G.D. and Ludwig, M.L., J. Mol. Biol., 117 (1977) 195.

    Google Scholar 

  20. Abad-Zapatero, C., Griffith, J.P., Sussman, J.L. and Rossmann, M.G., J. Mol. Biol., 198 (1987) 445.

    Google Scholar 

  21. Cowan, S.W., Newcomer, M.E. and Jones, T.A., Protein Struct. Funct. Genet., 8 (1990) 44.

    Google Scholar 

  22. Arni, R., Heinemann, U., Tokuoka, R. and Saenger, W., J. Biol. Chem., 263 (1988) 15358.

    Google Scholar 

  23. Weber, I.T. and Steitz, T.A., J. Mol. Biol., 198 (1987) 311.

    Google Scholar 

  24. James, M.N.G., Sielecki, A.R., Brayer, G.D., Delbaere, L.T.J. and Bauer, C.-A., J. Mol. Biol., 144 (1980) 43.

    Google Scholar 

  25. Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 8 (1994) 545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, P.L., Dean, P.M. Electrostatic complementarity between proteins and ligands. 2. Ligand moieties. J Computer-Aided Mol Des 8, 527–544 (1994). https://doi.org/10.1007/BF00123664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123664

Key words

Navigation