Skip to main content
Log in

The effect of physical organic properties on hydrophobic fields

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Physical organic structural properties of small molecules and macromolecules such as bond count, branching and proximity between multiple polar fragments contribute significantly to measured hydrophobicity (log P). These structural properties are encoded in the Rekker and Leo methods of calculating log P as structural-dependent factors. Regardless of the size of the atom primitive set, methods predicting log P with only atom primitives can miss subtle structural detail within series of related compounds. The HINT (Hydropathic INTeractions) model for inter- and intramolecular noncovalent interactions calculates atom-based hydrophobic constants, but uses all Leo-type factors in the calculation rather than a large set of atom primitives. Two types of applications of HINT are discussed: evaluation of the binding of an inhibitor (A74704) to HIV-1 protease, where it is shown that modeling of the protonation state (i.e., Asp25, Asp125) in the protein can strongly influence perceived substrate binding; and the use of HINT to calculate a third (hydropathic) field for CoMFA can yield a statistically enhanced and predictive model for molecular design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AbrahamD.J. and KelloggG.E., In KubinyiH. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 506–522.

    Google Scholar 

  2. TanfordC., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York, NY, 1980, pp. 1–233.

    Google Scholar 

  3. FauchereJ.L. and PliskaV.E., Eur. J. Med. Chem., 18 (1983) 369.

    Google Scholar 

  4. CreightonE., Proteins—Structures and Molecular Properties, Freeman, New York, NY, 1993, pp. 157–163.

    Google Scholar 

  5. HanschC. and LeoA.J., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, NY, 1979, pp. 1–339.

    Google Scholar 

  6. AbrahamD.J. and LeoA.J., Proteins, 2 (1987) 130.

    Google Scholar 

  7. RosemanM.A., J. Mol. Biol., 200 (1988) 513.

    Google Scholar 

  8. EisenbergD., WilcoxW. and McLachlanA.D., J. Cell. Biochem., 31 (1986) 11.

    Google Scholar 

  9. NichollsA., SharpK.A. and HonigB., Proteins, 11 (1991) 281.

    Google Scholar 

  10. FujitaT., IwasaJ. and HanschC., J. Am. Chem. Soc., 86 (1964) 5175.

    Google Scholar 

  11. LeeB. and RichardsF.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  12. AbrahamD.J., Intra-Science Chem. Rep., 8 (1974) 1.

    Google Scholar 

  13. GhoseA.K. and CrippenG.M., J. Comput. Chem., 7 (1986) 565.

    Google Scholar 

  14. EisenbergD. and McLachlanA.D., Nature, 319 (1986) 199.

    Google Scholar 

  15. AudryE., DubostJ.P., ColleterJ.C. and DalletPh., Eur. J. Med. Chem., 21 (1986) 71.

    Google Scholar 

  16. FuretP., SeleA. and CohenN.C., J. Mol. Graphics, 6 (1988) 182.

    Google Scholar 

  17. FauchereJ.L., QuarendonP. and KaettererL., J. Mol. Graphics, 6 (1988) 203.

    Google Scholar 

  18. WirekoF.C., KelloggG.E. and AbrahamD.J., J. Med. Chem., 34 (1991) 758.

    Google Scholar 

  19. KelloggG.E., JoshiG.S. and AbrahamD.J., Med. Chem. Res., 1 (1992) 444.

    Google Scholar 

  20. KelloggG.E. and AbrahamD.J., J. Mol. Graphics, 10 (1992) 212.

    Google Scholar 

  21. CramerIIIR.D., PattersonD.E. and BunceJ.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  22. KelloggG.E., SemusS.F. and AbrahamD.J., J. Comput.-Aided Mol. Design, 5 (1991) 545.

    Google Scholar 

  23. GoodfordP.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  24. FolkersG., MerzA. and RognanD., In WermuthC.G. (Ed.) Trends in QSAR and Molecular Modelling 92 (Proceedings of the 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, 1993, pp. 233–244.

    Google Scholar 

  25. NorinderU., J. Comput.-Aided Mol. Design, 4 (1990) 381.

    Google Scholar 

  26. PerutzM.F., FermiG., AbrahamD.J., PoyartC. and BursauxE., J. Am. Chem. Soc., 108 (1986) 1064.

    Google Scholar 

  27. Abraham, D.J., (1983) unpublished work.

  28. Abraham, D.J. and Lesk, A., (1985) unpublished work.

  29. Kellogg, G.E. and Abraham, D.J., (1989) unpublished work.

  30. LevittM., J. Mol. Biol., 168 (1983) 595.

    Google Scholar 

  31. LevittM. and PerutzM.F., J. Mol. Biol., 201 (1988) 751.

    Google Scholar 

  32. EricksonJ., NeidhartD.J., VanDrieJ., KempfD.J., WangX.C., NorbeckD.W., PlattnerJ.J., RittenhouseJ.W., TuronM., WideburgN., KohlbrennerW.E., SimmerR., HelfrichR., PaulD.A. and KniggeM., Science, 249 (1990) 527.

    Google Scholar 

  33. Kellogg, G.E., Burt, S., Gussio, R., Erickson, J.E. and Abraham, D.J., manuscript in preparation.

  34. DePriest, S.A., American Crystallographic Association Meeting, Albuquerque, NM, May 23–28, 1993, Abstract G002.

  35. Nayak, V.R. and Kellogg, G.E., Med. Chem. Res., (1994) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, D.J., Kellogg, G.E. The effect of physical organic properties on hydrophobic fields. J Computer-Aided Mol Des 8, 41–49 (1994). https://doi.org/10.1007/BF00124348

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124348

Key words

Navigation