Skip to main content
Log in

Pharmacophore identification by molecular modeling and chemometrics: The case of HMG-CoA reductase inhibitors

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A methodology based on molecular modeling and chemometrics is applied to identify the geometrical pharmacophore and the stereoelectronic requirements for the activity in a series of inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, an enzyme involved in cholesterol biosynthesis. These inhibitors present two common structural features—a 3,5-dihydroxy heptanoic acid which mimics the active portion of the natural substrate HMG-CoA and a lipophilic region which carries both polar and bulky groups. A total of 432 minimum energy conformations of 11 homologous compounds showing different levels of biological activity are calculated by the molecular mechanics MM2 method. Five atoms are selected as representatives of the relevant fragments of these compounds and three interatomic distances, selected among 10 by means of a Principal Component Analysis (PCA), are used to describe the three-dimensional disposition of these atoms. A cluster analysis procedure, performed on the whole set of conformations described by these three distances, allows the selection of one cluster whose centroid represents a geometrical model for the HMG-CoA reductase pharmacophore and the conformations included are candidates as binding conformations. To obtain a refinement of the geometrical model and to have a better insight into the requirements for the activity of these inhibitors, the Molecular Electrostatic Potential (MEP) distributions are determined by the MNDO semiempirical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayer, D., Naylor, C.B., Motoc, I. and Marshall, G.R., J. Comput.-Aided Mol. Design, 1 (1987) 3.

    Google Scholar 

  2. Crippen, G.M. and Havel, T.F., Distance Geometry and Molecular Conformation, Research Studies Press, Tauton, U.K., John Wiley and Sons, New York, 1988, p. 541.

    Google Scholar 

  3. J.Tomasi, In Ratajczak, H. and Orville-Thomas, W.J. (Eds), Molecular Interactions, Vol. 3, John Wiley and Sons, New York, 1982, pp. 119–182.

    Google Scholar 

  4. Burt, C., Richards, W.G. and Huxley, P., J. Comp. Chem., 11, (1990) 1139.

    Google Scholar 

  5. Manaut, F., Sanz, F., José, J. and Milesi, M., J. Comput.-Aided Mol. Design, 5 (1991) 371.

    Google Scholar 

  6. Stokker, G.E., Alberts, A.W., Anderson, P.S., Cragoe, E.J., Deana, A.A., Gilfillan, J.L., Hirshfield, J., Holtz, W.J., Hoffman, W.F., Huff, J.W., Lee, T.J., Novello, F.C., Prugh, J.D., Rooney, C.S., Smith, R.L. and Willard, A.K., J. Med. Chem., 29 (1986) 170.

    Google Scholar 

  7. Kathawala, F.G., In Van derGoot, H., Domány, G., Pallos, L. and Timmerman, H. (Eds), Trends in Medicinal Chemistry '88, Elsevier Science Publishers, Amsterdam, 1989, pp. 709–728.

    Google Scholar 

  8. Stokker, G.E., Hoffman, W.F., Alberts, A.W., Cragoe, E.J., Deana, A.A., Gilfillan, J.L., Huff, J.W., Novello, F.C., Prugh, J.D., Smith, R.L. and Willard, A.K., J. Med. Chem., 28 (1985) 347.

    Google Scholar 

  9. Baader, E., Bartmann, W., Beck, G., Bergmann, A., Jendralla, H., Kesseler, K., Wess, G., Schubert, W., Granzer, E., Kerekjarto, B.V. and Krause, R., Tetrahedron Lett., 29 (1988) 929.

    Google Scholar 

  10. Beck, G., Kesseler, K., Baader, E., Bartmann, W., Bergmann, A., Granzer, E., Jendralla, H., Kerekjarto, B.V., Krause, R., Paulus, E., Schubert, W. and Wess, G., J. Med. Chem., 33 (1990) 52.

    Google Scholar 

  11. Stokker, G.E., Alberts, A.W., Gilfillan, J.L., Huff, J.W. and Smith, R.L., J. Med. Chem., 29 (1986) 852.

    Google Scholar 

  12. Hoffman, W.F., Alberts, A.W., Cragoe, E.J., Deana, A.A., Evans, B.E., Gilfillan, J.L., Gould, N.P., Huff, J.W., Novello, F.C., Prugh, J.D., Rittle, K.E., Smith, R.L., Stokker, G.E. and Willard, A.K., J. Med. Chem., 29 (1986) 159.

    Google Scholar 

  13. Roth, B.D., Ortwine, D.F., Hoefle, M.L., Stratton, C.D., Sliskovic, D.R., Wilson, M.W. and Newton, R.S., J. Med. Chem. 33 (1990) 21.

    Google Scholar 

  14. Sit, S.Y., Parker, R.A., Motoc, I., Han, W., Balasubramanian, N., Catt, J.D., Brown, P.J., Harte, W.E., Thompson, M.D. and Wright, J.J., J. Med. Chem., 33 (1990) 2982.

    Google Scholar 

  15. Cosentino, U., Moro, G., Pitea, D., Todeschini, R., Brossa, S., Gualandi, F., Scolastico, C. and Giannessi, F., Quant. Struct.-Act Relat., 9 (1990) 195.

    Google Scholar 

  16. Belvisi, L., Brossa, S., Salimbeni, A., Scolastico, C. and Todeschini, R., In Silipo, C. and Vittoria, A. (Eds) QSAR: Rational Approaches to the Design of Bioactive Compounds, Elsevier Science Publishers, Amsterdam, 1991, pp. 423–426.

    Google Scholar 

  17. Mohamadi, F., Richards, N.G.J., Guida, W.G., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T. and Still, W.C., J. Comput. Chem., 11 (1990) 440.

    Google Scholar 

  18. SYBYL Molecular Modeling Software, Tripos Associates/Evans & Sutherland, St. Louis, MO, U.S.A.

  19. Wold, S., Esbensen, K. and Geladi, P., Chemometrics Int. Lab. Syst., 2 (1987) 37.

    Google Scholar 

  20. Jarvis, R.A. and Patrick, E.A., IEEE Trans. Comput., C 22 (1973) 1025.

    Google Scholar 

  21. SCAN, by Todeschini, R., Frank, I.E., Moro, G. and Cosentino, U., JeryIl Inc., 790 Esplanada, Stanford, CA 94305, U.S.A.

  22. MOPAC 5.0 ESP: Merz, K.M. and Besler, B.H., QCPE Bull., 10 (1990) 589.

    Google Scholar 

  23. Luque, F.J., Illas, F. and Orozco, M., J. Comput. Chem., 11 (1990) 416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosentino, U., Moro, G., Pitea, D. et al. Pharmacophore identification by molecular modeling and chemometrics: The case of HMG-CoA reductase inhibitors. J Computer-Aided Mol Des 6, 47–60 (1992). https://doi.org/10.1007/BF00124386

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124386

Key words

Navigation