Skip to main content
Log in

Flexible ligand docking using a genetic algorithm

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Two computational techniques have been developed to explore the orientational and conformational space of a flexible ligand within an enzyme. Both methods use the Genetic Algorithm (GA) to generate conformationally flexible ligands in conjunction with algorithms from the DOCK suite of programs to characterize the receptor site. The methods are applied to three enzyme-ligand complexes: dihydrofolate reductase-methotrexate, thymidylate synthase-phenolpthalein and HIV protease-thioketal haloperidol. Conformations and orientations close to the crystallographically determined structures are obtained, as well as alternative structures with low energy. The potential for the GA method to screen a database of compounds is also examined. A collection of ligands is evaluated simultaneously, rather than docking the ligands individually into the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GA:

genetic algorithm; dhfr, dihydrofolate reductase

mtx:

methotrexate

ts:

thymidylate synthase

fen:

phenolphalein

HIV:

human immune deficiency virus

hivp:

HIV protease

thk:

thioketal haloperidol

References

  1. Kuntz, I.D., Science, 257 (1992) 1078.

    Google Scholar 

  2. Perun, T. and Propst, C.L. (Eds.) Computer-Aided Drug Design, Marcel Dekker, New York, NY, 1989.

    Google Scholar 

  3. Dolata, D.P., Leach, A.R. and Prout, K., J. Comput.-Aided Mol. Design, 1 (1987) 73.

    Google Scholar 

  4. Leach, A.R. and Prout, K., J. Comput. Chem., 11 (1990) 1193.

    Google Scholar 

  5. Clark, D.E., Jones, G., Willett, P., Kenny, P.W. and Glen, R.C., J. Chem. Inf. Comput. Sci., 34 (1994) 197.

    Google Scholar 

  6. Dammkoehler, R.A., Karasek, S.F., Shands, E.F. and Marshall, G.R., J. Comput.-Aided Mol. Design, 3 (1989) 3.

    Google Scholar 

  7. Hurst, T., J. Chem. Inf. Comput. Sci., 34 (1994) 190.

    Google Scholar 

  8. Judson, R.S., Jaeger, E.P., Treasurywala, A.M. and Peterson, M.L., J. Comput. Chem., 14 (1993) 1407.

    Google Scholar 

  9. McGarrah, D.B. and Judson, R.S., J. Comput. Chem., 14 (1993) 1385.

    Google Scholar 

  10. Payne, A.W.R. and Glen, R.C., J. Mol. Graph., 11 (1993) 74.

    Google Scholar 

  11. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  12. Bacon, D.J. and Moult, J., J. Mol. Biol., 225 (1992) 849.

    Google Scholar 

  13. Lawrence, M. and Davis, P.C., Proteins, 12 (1992) 31.

    Google Scholar 

  14. Lin, S.L., Nussinov, R., Fischer, D. and Wolfson, H.J., Proteins, 18 (1994) 94.

    Google Scholar 

  15. Norel, R., Fischer, D., Wolfson, H.J. and Nussinov, R., Protein Eng., 7 (1994) 39.

    Google Scholar 

  16. Kasinos, N., Lilley, G.A., Subbarao, N. and Haneel, I., Proteins, 5 (1992) 69.

    Google Scholar 

  17. Kuhl, F.S., Crippen, G.M. and Friesen, D.K., J. Comput. Chem., 5 (1984) 24.

    Google Scholar 

  18. Lewis, R.A., Roe, D.C., Huang, C., Ferrin, T.E., Langridge, R. and Kuntz, I.D., J. Mol. Graph., 10 (1992) 66.

    Google Scholar 

  19. Böhm, H.J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  20. Böhm, H.J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  21. Rotstein, S.H. and Murcko, M.A., J. Ced. Chem., 36 (1993) 1700.

    Google Scholar 

  22. Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol. Design, 7 (1993) 23.

    Google Scholar 

  23. Blaney, J., personal communication, 1993.

  24. Gillet, V.J., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z. and Johnson, A.P., J. Chem. Inf. Comput. Sci., 34 (1994) 207.

    Google Scholar 

  25. Goodsell, D.S. and Olson, A.J., Proteins, 8 (1990) 195.

    Google Scholar 

  26. Goodsell, D.S., Lauble, H., Stout, C.D. and Olson, A.J., Proteins, 17 (1993) 1.

    Google Scholar 

  27. Hart, T.N. and Read, R.J., Proteins, 13 (1992) 206.

    Google Scholar 

  28. Stoddard, B.L. and KoshlandJr., D.E., Nature, 358 (1992) 774.

    Google Scholar 

  29. Stoddard, B.L. and KoshlandJr., D.E., Proc. Natl. Acad. Sci. USA, 90 (1993) 1146.

    Google Scholar 

  30. Leach, A.R. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 730.

    Google Scholar 

  31. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  32. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., ProfetaJr., S., and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  33. Yamada, M. and Itai, A., Chem. Pharm. Bull., 41 (1993) 1203.

    Google Scholar 

  34. Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY, 1991.

    Google Scholar 

  35. Forrest, S., Science, 261 (1993) 872.

    Google Scholar 

  36. Goldberg, D., Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  37. Miller, M.D., Kearsley, D.J., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.

    Google Scholar 

  38. Geysen, H.M., Meloen, R.H. and Barteling, S.J., Proc. Natl. Acad. Sci. USA, 81 (1984) 3998.

    Google Scholar 

  39. Simon, R.J., Kania, R.S., Zuckermann, R.N., Huebner, V.D., Jewell, D.A., Banville, S., Ng, S., Wang, L., Rosenberg, S., Marlowe, C.K., Spellmeyer, D.C., Tan, R., Frankel, A.D., Santi, D.V., Cohen, F.E. and Bartlett, P.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 9367.

    Google Scholar 

  40. Bunin, B.A. and Ellman, J.A., J. Am. Chem. Soc., 114 (1992) 109997.

    Google Scholar 

  41. Baum, R.M., Chem. Eng. News, 72 (1994) 20.

    Google Scholar 

  42. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  43. Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  44. Richards, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Google Scholar 

  45. Connolly, M.L., Science, 221 (1983) 709.

    Google Scholar 

  46. Schraudolph, N., GAucsd, Version 1.4, University of California, San Diego, CA, 1992.

    Google Scholar 

  47. Meng, E.C., Gschwend, D.A., Blaney, J.M. and Kuntz, I.D., Proteins, 17 (1993) 268.

    Google Scholar 

  48. Grefenstette, J., Genesis, Version 4.5, Naval Research Laboratory, Washington, DC, 1990.

    Google Scholar 

  49. Marsili, M. and Gasteiger, J., Croat. Chim. Acta., 52 (1980) 601.

    Google Scholar 

  50. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3210.

    Google Scholar 

  51. SYBYL, Version 6.02, Tripos Associates, St. Louis, MO, 1993.

  52. Fletcher, R., Practical Methods of Optimization: Unconstrained Optimization, Vol. 1, Wiley, New York, NY, 1981.

    Google Scholar 

  53. Blakley, R.L., The Biochemistry of Folic Acid and Related Pteridines, Wiley, New York, NY, 1969.

    Google Scholar 

  54. Kraut, J. and Mathews, D.A., In Jurnak, F.A. and McPherson, A. (Eds.) Biological Macromolecules, Wiley, New York, NY, 1987, pp. 1–72.

    Google Scholar 

  55. Stryer, L., Biochemistry, 2nd ed., W.H. Freeman, San Francisco, CA, 1983, p. 527.

    Google Scholar 

  56. Wlodawer, A. and Erickson, J.W., Annu. Rev. Biochem., 62 (1993) 543.

    Google Scholar 

  57. Shoichet, B.K., Stroud, R.M., Santi, D.V., Kuntz, I.D. and Perry, K.M., Science, 259 (1993) 1445.

    Google Scholar 

  58. Rutenber, E., Fauman, E.B., Keenan, R.J., Fong, S., Furth, P.S., Ortiz de Montellano, P.R., Meng, E., Kuntz, I.D., DeCamp, D.L., Salto, R., Rose, J.R., Craik, C.S. and Stroud, R.M., J. Biol. Chem., 268 (1993) 15343.

    Google Scholar 

  59. Bolin, J.T., Filman, D.J., Mathews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1992) 13650.

    Google Scholar 

  60. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.E., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  61. Molecular Design Limited, Fine Chemicals Directory San Leandro, CA.

  62. Dixon, J.S., In Wermuth, C.G. (Ed.) Trends in QSAR and Molecular Modelling 92 (Proceedings of the 9th European Symposium on Structure-Activity. Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, 1993, pp. 412–413.

    Google Scholar 

  63. Fiorini, P. and Inselberg, A., In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society Press, Scottsdale, AZ, 1989, pp. 1215–1220.

    Google Scholar 

  64. Inselberg, A. and Dimsdale, B., In Proceedings of the First IEEE Conference on Visualization, IEEE Computer Society Press, San Francisco, CA, 1990, pp. 361–378.

    Google Scholar 

  65. Judson, R.S., Jaeger, E.P. and Treasurywala, A.M., J. Mol. Struct., 114 (1994) 191.

    Google Scholar 

  66. DesJarlais, R.L., Sheridan, R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 31 (1988) 722.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshiro, C.M., Kuntz, I.D. & Dixon, J.S. Flexible ligand docking using a genetic algorithm. J Computer-Aided Mol Des 9, 113–130 (1995). https://doi.org/10.1007/BF00124402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124402

Keywords

Navigation