Skip to main content

Quantitative structure-agonist activity relationship of capsaicin analogues

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The MULTIple Computer Automated Structure Evaluation (MULTICASE) methodology has been used to study the quantitative structure-agonist activity relationship of a series of capsaicin agonists. A number of substructures and physicochemical properties of capsaicin analogues were identified as being responsible for high agonist potency. The optimal log P value for the agonist potency as estimated from QSAR analysis is 5.12. It was also found that a cluster of inactive molecules in the database have lipophilicity values below 2.94. Molecular modeling was employed to elucidate the detailed structural features of the pharmacophore of capsaicin analogues. Systematic conformational analysishas shown that the activity of capsaicin analogues strongly depends upon their ability to reach the required conformational profile. Based upon these observations, a three-dimensional pharmacophore model for the capsaicin-receptor interactions is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Virus, R.M. and Gebhart, G.F., Life Sci., 25 (1979) 1273.

    Google Scholar 

  2. Rozin, P., In Green, B.G., Mason, J.R. and Kare, M.R. (Eds.) Irritation, Vol. 2, Marcel Dekker, New York, NY, 1990, pp. 231–269.

    Google Scholar 

  3. Butterworth, J.F.I. and Strichartz, G.R., Anesthesiology, 72 (1990) 711.

    Google Scholar 

  4. Walpole, C.S.J., Wriggleworth, R., Bevan, S., Campbell, E.A., Dray, A., James, I.F., Masdin, K.J., Perkins, M.N. and Winter, J., J. Med. Chem., 36 (1993) 2362.

    Google Scholar 

  5. Szolcsanyi, J., In Green, B.G., Mason, J.R. and Kare, M.R. (Eds.) Irritation, Vol. 2, Marcel Dekker, New York, NY, 1990, pp. 141–168.

    Google Scholar 

  6. Yeh, J.-L., Lo, Y.-C., Wang, Y. and Chen, I.-J., Brain Res. Bull., 30 (1993) 641.

    Google Scholar 

  7. Hayes, A.G., Oxford, A., Reynolds, M., Shingler, A.H., Skingle, M., Smith, C. and Tyers, M.B., Life Sci., 34 (1984) 1241.

    Google Scholar 

  8. Cholewinski, A., Burgess, G.M. and Bevan, S., Neuroscience, 55 (1993) 1015.

    Google Scholar 

  9. Bevan, S. and Szolcsanyi, J., Trends Pharmacol. Sci., 11 (1990) 330.

    Google Scholar 

  10. Wood, J.N., Winter, J., James, I.F., Rang, H.P., Yeats, J. and Bevan, S., J. Neurosci., 8 (1988) 3208.

    Google Scholar 

  11. Fitzgerald, M., Pain, 15 (1983) 109.

    Google Scholar 

  12. James, I.F., Walpole, C.S.J., Hixon, J., Wood, J.N. and Wriggleworth, R., Mol. Pharmacol., 33 (1988) 643.

    Google Scholar 

  13. Szallasi, A. and Blumberg, P.M., Adv. Pharmacol., 24 (1991) 123.

    Google Scholar 

  14. Brand, L.M., Skare, K.L., Loomans, M.E., Reller, H.H., Schwen, R.J., Lade, D.A., Bohne, R.L., Maddin, C.S., Moorehead, D.P., Fanelli, R., Chiabrando, C., Castelli, M.G. and Tai, H.H., Agents Actions, 31 (1990) 229.

    Google Scholar 

  15. Janusz, J.M., Buckwalter, B.L., Young, P.A., Lahann, T.R., Farmer, R.W., Kasting, G.B., Loomans, M.E., Kerckaert, G.A., Maddin, C.S., Berman, E.F., Bohne, R.L., Cupps, T.L. and Milstein, J.R., J. Med. Chem., 36 (1993) 2595.

    Google Scholar 

  16. Szallasi, A. and Blumberg, P.M., Neuroscience, 30 (1989) 515.

    Google Scholar 

  17. Bevan, S., Hothi, S., Hughes, G., James, I.F., Rang, H.P., Shah, K., Walpole, C.S.J. and Yeats, J.C., Br. J. Pharmacol., 107 (1992) 544.

    Google Scholar 

  18. Szallasi, A., Goso, C., Blumberg, P.M. and Manzini, S., J. Pharmacol. Exp. Ther., 267 (1993) 728.

    Google Scholar 

  19. Szallasi, A. and Blumberg, P.M., Brain Res., 524 (1990) 106.

    Google Scholar 

  20. Winter, J., Dray, A., Wood, J.N., Yeats, J.C. and Bevan, S., Brain Res., 520 (1990) 131.

    Google Scholar 

  21. Wehmeyer, K.R., Kasting, G.B., Powell, J.H., Kuhlenbeck, D.L., Underwood, R.A. and Bowman, L.A., J. Pharm. Biomed. Anal., 8 (1990) 177.

    Google Scholar 

  22. Szallasi, A., Gen. Pharmacol., 25 (1994) 223.

    Google Scholar 

  23. Szallasi, A., Szolcsanyi, J., Szallasi, Z. and Blumberg, P.M., Naunyn-Schmiedeberg's Arch. Pharmacol., 344 (1991) 551.

    Google Scholar 

  24. Szallasi, A. and Blumberg, P.M., Life Sci., 47 (1990) 1399.

    Google Scholar 

  25. Santicioli, P., Bianco, E.D., Figini, M., Bevan, S. and Maggi, C.A., Br. J. Pharmacol., 110 (1993) 609.

    Google Scholar 

  26. Walpole, C.S.J., Bevan, S., Bovermann, G., Boelsterli, J.J., Breckenridge, R., Davies, J.W., Hughes, G.A., James, I., Oberer, L., James, I.F., Winter, J. and Wriggleworth, R., J. Med. Chem., 37 (1994) 1942.

    Google Scholar 

  27. Szolcsanyi, J. and Jancso-Gabor, A., Arzneim.-Forsch. Drug Res., 25 (1975) 1877.

    Google Scholar 

  28. Szolcsanyi, J. and Jancso-Gabor, A., Arzneim.-Forsch. Drug Res., 26 (1976) 33.

    Google Scholar 

  29. Walpole, C.S.J., Wriggleworth, R., Bevan, S., Campbell, E.A., Dray, A., James, I.F., Masdin, K.J., Perkins, M.N. and Winter, J., J. Med. Chem., 36 (1993) 2373.

    Google Scholar 

  30. Walpole, C.S.J., Wriggleworth, R., Bevan, S., Campbell, E.A., Dray, A., James, I.F., Masdin, K.J., Perkins, M.N. and Winter, J., J. Med. Chem., 36 (1993) 2381.

    Google Scholar 

  31. Walpole, C.S.J. and Wriggleworth, R., In Wood, J.N. (Ed.) Capsaicin in the Study of Pain, Harcourt Brace, San Diego, CA, 1993, pp. 63–81.

    Google Scholar 

  32. Klopman, G., J. Am. Chem. Soc., 106 (1984) 7315.

    Google Scholar 

  33. Klopman, G., Quant. Struct.-Act. Relatsh., 11 (1992) 176.

    Google Scholar 

  34. Klopman, G., Li, J.-Y., Wang, S. and Dimayuga, M., J. Chem. Inf. Comput. Sci., 34 (1994) 752.

    Google Scholar 

  35. Klopman, G., Wang, S. and Balthasar, D.M., J. Comput. Chem., 32 (1992) 474.

    Google Scholar 

  36. Van, Catledge, F.A., J. Org. Chem., 45 (1980) 4801.

    Google Scholar 

  37. Insight II, Version 2.2.0, Biosym Technologies Inc., San Diego, CA, 1992.

  38. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Protein Struct. Funct. Genet., 4 (1988) 31.

    Google Scholar 

  39. Strichartz, G.R., Sanchez, V., Arthur, G.R., Chafetz, R. and Martin, D., Anesth. Analg., 71 (1990) 158.

    Google Scholar 

  40. Bradley, D.J. and Richards, C.D., Br. J. Pharmacol., 81 (1984) 161.

    Google Scholar 

  41. Hansch, C., Bjorkroth, J.P. and Leo, A., J. Pharm. Sci., 76 (1987) 663.

    Google Scholar 

  42. Szallasi, A. and Blumberg, P.M., Life Sci., 48 (1991) 1863.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klopman, G., Li, JY. Quantitative structure-agonist activity relationship of capsaicin analogues. J Computer-Aided Mol Des 9, 283–294 (1995). https://doi.org/10.1007/BF00124458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124458

Keywords